Louis Tiao
Louis Tiao
Home
Publications
Posts
Projects
Talks
Contact
CV
Light
Dark
Automatic
Graph Representation Learning
Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings
Our proposed framework uses a joint probabilistic model and stochastic variational inference to improve the performance and robustness of graph convolutional networks (GCNs) in scenarios without input graph data, outperforming state-of-the-art algorithms on semi-supervised classification tasks.
Pantelis Elinas
,
Edwin v. Bonilla
,
Louis Tiao
PDF
Cite
Code
Dataset
Video
Cite
×