Bayesian optimization (BO) is among the most effective and widely-used blackbox optimization methods. BO proposes solutions according to an explore-exploit trade-off criterion encoded in an acquisition function, many of which are derived from the …

One weird trick to make exact inference in Bayesian logistic regression tractable.

Bayesian optimization (BO) is among the most effective and widely-used blackbox optimization methods. BO proposes solutions according to an explore-exploit trade-off criterion encoded in an acquisition function, many of which are derived from the …

We propose a framework that lifts the capabilities of graph convolutional networks (GCNs) to scenarios where no input graph is given and increases their robustness to adversarial attacks. We formulate a joint probabilistic model that considers a …

We propose a framework that lifts the capabilities of graph convolutional networks (GCNs) to scenarios where no input graph is given and increases their robustness to adversarial attacks. We formulate a joint probabilistic model that considers a …

A summary of notation, identities and derivations for the sparse variational Gaussian process (SVGP) framework.

We formalize the problem of learning interdomain correspondences in the absence of paired data as Bayesian inference in a latent variable model (LVM), where one seeks the underlying hidden representations of entities from one domain as entities from …

An in-depth practical guide to variational encoders from a probabilistic perspective.

© Louis Tiao 2021

Powered by the Academic theme for Hugo.