Bayesian optimization (BO) is among the most effective and widely-used blackbox optimization methods. BO proposes solutions according to an explore-exploit trade-off criterion encoded in an acquisition function, many of which are derived from the …
This post demonstrates how to approximate the KL divergence (in fact, any f-divergence) between implicit distributions, using density ratio estimation by probabilistic classification.
We formalize the problem of learning interdomain correspondences in the absence of paired data as Bayesian inference in a latent variable model (LVM), where one seeks the underlying hidden representations of entities from one domain as entities from …