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Gaussian Processes: The Story So Far

Gaussian processes (gps) are renowned for their exceptional data efficiency, reliable uncertainty estimation,
flexibility, and built-in mechanisms to mitigate against overfitting. However, they are often unfavorably com-
pared to deep learning approaches due to limited scalability and their inability to capture hierarchies of
abstract representations.

Sparse variational gps (svgps) [5] address scalability by introducing auxiliary inducing variables u ,
f (Z) ∈ RM at pseudo-inputs Z = [z1 · · · zM ]>. Approximate the posterior p(f ,u | y) with q?(f ,u) =
arg minq kl [q(f ,u) ‖ p(f ,u | y)] where q(f ,u) , p(f | u)q(u) and q(u) , N (mu,Cu).

Leads to predictive density:

q (f (x)) = GP
(

k>
u (x)K−1

uumu, k(x,x′) − k>
u (x)K−1

uu(Kuu − Cu)K−1
uuku(x′)

)
(1)

where [Kuu]mm′ , Cov (um, um′).

Reduces cost from O(N3) to O(M3) (assumingM � N )
Unlocks greater flexibility in model specification

Basis functions are effectively ku : X → RM where each element [ku(x)]m , Cov (f (x), um)

1. Standard Inducing Points are values of f evaluated at pseudo-inputs
um , f (zm) ⇒ [Kuu]mm′ = k(zm, zm′) and [ku(x)]m = k(zm,x)

Mapping is static: solely determined by fixed kernel k and local influence of zm.
2. Inter-domain Inducing Features [3] are a generalisation involving scalar projection of f onto some φm
in the reproducing kernel Hilbert space (rkhs) H of k,

um , 〈f, φm〉H ⇒ [Kuu]mm′ = 〈φm, φm′〉H and [ku(x)]m = φm(x)
Mapping is adaptive: can result in sparser representations that lead to greater scalability.

Spherical Inducing Features

Spherical harmonics, an extension of the
Fourier basis to multiple dimensions, can
be used to form φm [1]. Orthogonality
leads to diagonal covariance:

[Kuu]mm′ = λ−1
m δmm′

Reduces cost from O(M3) to O(M) (!)
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Figure 1: A few example spherical harmonics in 3D.
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Figure 2: A relu-activated hidden unit on
the sphere in 3D.

Spherical neural network (nn) activations. To make ku(x) resemble a
hidden layer in a feedfoward nn [2], define φm as themth hidden unit
with nonlinear activation σ,

φm(x) , ‖zm‖‖x‖ · σ

(
z>
mx

‖zm‖‖x‖

)

Predictive mean becomes a single-layer feedforward nn:

ku(x)>K−1
uumu =

M∑
m=1

βmφm(x), β , K−1
uumu ∈ RM

When stacked to form a deep gp (dgp), the propagation of
predictive means emuates forward pass through a deep nn (dnn)
Obtain predictive uncertainty in dnns for free as a byproduct (!)

Orthogonally-Decoupled Gaussian Processes
1. Decouple gp as sum of two independent gps [4]:

f (x) ∼ GP
(
0, k(x,x′)

)
⇔ f (x) = g(x) + h(x),

where
g(x) ∼ GP

(
0,k>

u (x)K−1
uuku(x′)

)
,

h(x) ∼ GP
(
0, s(x,x′)

)
for s(x,x′) , k(x,x′) − k>

u (x)K−1
uuku(x′).

2. Introduce orthogonal inducing variables
v , f (W),v′ , h(W) ∈ RK at pseudo-inputs
W , [w1 · · · wK ]>.

3. Approximate posterior q(v′) , N (mv,Cv).

Π

h

g

f

Figure 3: Hyperplane Π , {α>ku(·); α ∈ RM}

Leads to predictive density:
q(f∗) = N (K∗uK−1

uumu + S∗vS−1
vvmv︸ ︷︷ ︸

orthogonal bases

,K∗∗ − K∗uK−1
uu(Kuu − Cu)K−1

uuKu∗ − S∗vS−1
vv(Svv − Cv)S−1

vvSv∗︸ ︷︷ ︸
orthogonal bases

) (2)

Technical Issues with Spherical NN Activation Features
In practice, several widely-used kernels and activation functions are
incompatible:

Spectra mismatch. For the Matérn kernel, discrepancies in its
Fourier coefficients (nonzero) with those of the activation
features (zero) lead to overestimation of the predictive variance.
rkhs inner product. For the relu activation features, its
(squared) Fourier coefficients decay at the same rate as those of
numerous kernels, resulting in an indeterminate rkhs inner
product.

−2

0

2

4

y

Matérn-5/2

R
E

L
U

features

Arccos

−1 0 1
x

−2

0

2

4

y

−1 0 1
x

S
O

F
T

P
L

U
S

features

(a) Predictive densities.
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(b) Predictive variances, deconstructed.

Figure 4: Posterior of svgps with various kernels and activations; at L = 8 levels.
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Figure 5: Comparison of the Fourier
coefficients of various kernels and
activation features with increasing levels.

Our Solution

Extend the orthogonally-decoupled gp framework
with inter-domain inducing features: let

um , 〈f, φm〉H, and vk , 〈f, ψk〉H
for some choices of φm, ψk ∈ H.
To obtain Svv,Svf in eq. 2, need to compute prior
covariances Kvf ,Kvu,Kvvf

u
v

 ∼ N

0,

Kff K>
uf K>

vf
Kuf Kuu K>

vu
Kvf Kvu Kvv




In this work:

φm: mth unit of the spherical activation layer
ψk(x) , k(wk,x)

Leads to covariances:
[Kvf ]kn , Cov (vk, f (xn)) = k(wk,xn),

[Kvu]km , Cov (vk, um) = φm(wk),
[Kvv]kk′ , Cov (vk, vk′) = k(wk,wk′).

Cross-covariance Kvu consists of forward-pass of
pseudo-inputs wk through neurons φm

Experimental Results

Regression on Synthetic 1D Dataset
Incorporating a small handful of K = 8 orthogonal inducing variables
costs roughly the same as doubling the truncation level L but leads
to substantial improvements.

−2

0

2

4

y

Matérn-5/2

R
E

L
U

features

Arccos

−1 0 1
x

−2

0

2

4

y

−1 0 1
x

S
O

F
T

P
L

U
S

features

(a) Predictive densities.
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(b) Predictive variances, deconstructed.

Figure 6: Posterior of svgps with various kernels and activations, K = 8 orthogonal
bases; at L = 8 levels. New term SfvS−1

vvSvf offsets errors from the original basis.
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Figure 7: Evidence lower bound (elbo) and
training throughput for the various kernels
and activation features visualised in
Figures 4 and 6.

Regression on UCI Repository Datasets
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Figure 8: Test metrics, rmse and nlpd, on the uci regression datasets using the Arccos kernel with various activation features.
Along the rows labeled “inducing points”, the red and blue markers (�,�) represent the original svgp model [5], while the green
markers (�) represent solvegp [4]. Along the remaining rows, the red and blue markers (�,�) represent the activated svgp [2],
while the green markers (�) represent our proposed approach.
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