
A
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a.1 introduction

Sampling from Gaussian processes (gps) is not only crucial in its own
right but also plays a pivotal role in various downstream tasks, notably
Thompson sampling [258], as we detailed in Section 2.5.2.4.

Using the standard approach, the computational cost scales cubically
with the number of test points. Moreover, samples obtained through
this method cannot be straightforwardly evaluated at arbitrary inputs,
let alone optimised. To address these challenges, a common strategy
involves utilising the weight-space approximation of gps based on
their spectral decomposition. However, this introduces its own is-
sues, particularly when the number of training observations increases,
leading to erratic extrapolations [29, 183, 278].

Recent work has proposed a hybrid approach that leverages a sim-
ple, effective, yet underutilised method for sampling from Gaussian
conditionals [289, 291]. This method enables the combined use of the
canonical basis and the spectral basis (also known as Fourier features),
to generate samples efficiently. Notably, these samples can be obtained
with a linear cost in the number of test points, and are easy to evaluate
and optimise.

In existing works, the frequencies are selected through a straight-
forward mc approximation scheme. In this chapter, we explore the
use of various numerical integration techniques to improve upon the
selection mechanism. We provide a concise overview of approaches
considered for the Fourier feature decomposition of stationary ker-
nels, comparing their effectiveness in approximating the kernel matrix.
Subsequently, we introduce variations to existing schemes, extending
the applicability of decompositions to kernel classes beyond the se

kernel. We highlight a critical limitation in an existing class of schemes
based on Gaussian quadrature when dealing with kernels with small
lengthscales. Specifically, small lengthscales result in highly oscillatory
integrals that pose challenges for estimation through numerical meth-
ods. To address this, we consider a previously untapped technique
based on an extension of Newton-Cotes quadrature. Finally, we evalu-
ate how the Fourier feature decompositions derived from the various
numerical integration schemes impact the fidelity of the gp posterior
samples.
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a.2 decoupled sampling of gaussian processes

We give a brief overview of the method proposed by Wilson et al. [289].
Recall that for practical purposes, a gp posterior at T query locations is
simply a T-dimensional conditional Gaussian distribution. In general,
consider jointly Gaussian random variables a ∈ RT and b ∈ RM,

[
a

b

]
∼ N

([
µa

µb

]
,

[
Σaa Σab

Σba Σbb

])
.

The distribution of a conditioned on b = β is given by

p(a | b = β) = N (a | µa|b, Σa|b),

where the mean and covariance are given by

µa|b ≜ µa + ΣabΣ−1
bb(β− µb), and Σa|b ≜ Σaa − ΣabΣ−1

bb Σba.

The standard approach to generating samples from p(a | b = β) is to
use a location-scale transform of normal random variables, i. e.,

a = µa|b + Σ
1/2
a|bη, η ∼ N (0, I) ⇔ a ∼ N (µa|b, Σa|b),

where Σ
1/2
a|b denotes the Cholesky factor of Σa|b, whose calculation has

a cost of O(T3), and is precisely what makes the standard approach
so computationally expensive.

A powerful alternative for sampling conditional Gaussian variablesMatheron’s rule

is Matheron’s rule [120],

(a | b = β)
D
= a + ΣabΣ−1

bb(β− b), (A.1)

where D
= denotes equality in distribution. This is straightforward to

verify. By computing the mean and covariance of this expression, we
get

E[a + ΣabΣ−1
bb(β− b)] = µa + ΣabΣ−1

bb(β− µb) = µa|b

and

Cov[a + ΣabΣ−1
bb(β− b)]

= Σaa − 2ΣabΣ−1
bb Σba + ΣabΣ−1

bb ΣbbΣ−1
bb Σba

= Σaa − ΣabΣ−1
bb Σba = Σa|b

respectively. Recall from Section 2.4.1 that a gp is a random function
such that, at a finite set of locations X∗, the vector f∗ = f (X∗) follows
a Gaussian distribution. Specifically, if f (x) ∼ GP(0, k(x, x′)), then
f∗ ∼ N (0, K∗∗) where K∗∗ ≜ k(X∗, X∗) for some covariance function k.
Further recall from Equation (2.16) that the posterior of an exact gp at
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test locations X∗ given N observations y is p(f∗ | y) = N (µ∗|y, Σ∗∗|y),
where

µ∗|y ≜ K∗f(Kff + β−1I)−1y,

Σ∗∗|y ≜ K∗∗ −K∗f(Kff + β−1I)−1Kf∗,
(A.2)

and from Equation (2.22) that the conditional distribution of svgp

models at test locations X∗ given inducing variables u ∼ p(u) is
p(f∗ | u) = N (µ∗|u, Σ∗∗|u), where

µ∗|u ≜ K∗uK−1
uu u,

Σ∗∗|u ≜ K∗∗ −K∗uK−1
uu Ku∗.

(A.3)

Applying Matheron’s rule from Equation (A.1) to these conditionals,
we have, for exact gps,

(f∗ | y) D
= f∗ + K∗f(Kff + β−1I)−1(y− fN − ϵ),

and, for sparse gps,

(f∗ | u) D
= f∗ + K∗uK−1

uu(u− fM),

where (f∗, fN) and (f∗, fM) respectively are jointly sampled from the
gp prior. The astute reader will recognise the absurdity of this ap-
proach, as it is in fact considerably more expensive than the conven-
tional one. Specifically, jointly sampling from the prior incurs costs of
O
(
(T + N)3) and O

(
(T + M)3), respectively. As we shall see, this is

the paradox that Wilson et al. [289] managed to resolve.
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Figure A.1: An illustration of the variance starvation phenomenon. Across the
columns, we have a comparison of various gp posteriors and their
samples, given n = 4 (top) and n = 1, 024 (bottom) observations
at locations indicated by the shaded regions. A reproduction of
the figures originating from Wilson et al. [289].
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Let’s consider the weight-space approximation described in Sec-
tion 2.4.3. Recall from Equation (2.37) that the posterior weight density
is p(w | y) = N (µw|y, Σw|y), where

µw|y ≜ (Φ⊤Φ + β−1I)−1Φ⊤y,

Σw|y ≜ β−1(Φ⊤Φ + β−1I)−1.

Applying Matheron’s rule of Equation (A.1) to the weight-space
posterior, we have

(w | y) D
= w + Φ⊤(ΦΦ⊤ + β−1I)−1(y−Φw− ϵ).

While possible to sample from efficiently, as alluded to previously,
this approach is beset by the general limited expressiveness of finite-
dimensional feature maps, which can hamper ability to extrapolate
predictions at test time. In particular, for Fourier feature decompo-
sitions, this is a phenomenon known as variance starvation, wherebyvariance starvation

extrapolations become erratic as the number of observations N in-
creases. The intuition behind this is that although the Fourier basis is
suited for representing stationary gps, the posterior is generally non-
stationary. See Figure A.1 for an illustration of the variance starvation
phenomenon.

Wilson et al. [289] seek to combine the best of both worlds, by
leveraging the strength of the Fourier basis ϕ( · ) at representing
stationary priors [206], and the strength of the canonical basis k( · , z)
at representing the data [24].

The decoupled sampling approach for sparse gps is

(f∗ | u)
D≈ Φ∗w + K∗uK−1

uu (u−Φw) , (A.4)

and, for exact gps, is

(f∗ | y)
D≈ Φ∗w + K∗f(Kff + β−1I)−1 (y−Φw− ϵ) . (A.5)

It’s important to emphasise that these are in fact only approximately
equal in distribution. To understand precisely how they differ, let us
compute their moments. We focus on the case of sparse gps in Equa-
tion (A.4), the mean and covariance of which are

E[Φ∗w + K∗uK−1
uu (u−Φw)] = K∗uK−1

uu u = µ∗|u

and

Cov[Φ∗w + K∗uK−1
uu (u−Φw)]

= Φ∗Φ⊤∗ − 2K∗uK−1
uu ΦΦ⊤∗ + K∗uK−1

uu ΦΦ⊤K−1
uu Ku∗

(A.6)

≈ K∗∗ −K∗uK−1
uu Ku∗ = Σ∗∗|u

We see that mean is exactly equal to the µ∗|u of Equation (A.3), but the
covariance is only equal to Σ∗∗|u if

Φ∗Φ⊤∗ = K∗∗, ΦΦ⊤∗ = Ku∗, and ΦΦ⊤ = Kuu,
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Figure A.2: Posterior predictive distributions.
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Figure A.3: Posterior predictive distributions from the decoupled approach,
overlayed on top of one another.

which are satisfied when k(x, x′) = ϕ(x)⊤ϕ(x′) for all x, x′ ∈ X .
In other words, we have equality in distribution in Equations (A.4)
and (A.5) when the kernel approximation is exact. Thus seen, the
quality of decoupled pathwise samples relies crucially on the quality
of the kernel approximation in Equation (2.38) itself. In this chapter,
we explore various methods from the classical literature on numerical
integration [51] to tighten this approximation.

a.3 numerical integration for gp prior approximations

A multitude of numerical integration methods [51] can readily be de-
ployed to compute the expectation in Equation (2.44),

k(x, x′) = Ep(ω)[φω(x)⊤φω(x′)]

≈
L

∑
i=1

αi

(
φξi

(x)⊤φξi
(x′)

)
,
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where ξi are referred to as the abscissas, or, nodes, and αi the weights,
or, coefficients. Let us define the mapping φ : RD → RL′ ,

φ(x) ≜




√
α1 cos ξ⊤1 x

...
√

αL cos ξ⊤L x
√

α1 sin ξ⊤1 x
...

√
αL sin ξ⊤L x




, (A.7)

where L′ = 2L. We therefore have

φ(x)⊤φ(x′) =
L

∑
i=1

ai

(
φξi

(x)⊤φξi
(x′)

)
≈ k(x, x′).

We can view φ(x),φ(x′) as a factorisation, or, decomposition, of the
kernel k(x, x′). Thus, we refer to φ as a Fourier feature decomposition of
k.

a.3.1 Monte Carlo Estimation

Let us consider the simple case of mc integration, where αi ≜ 1/L and
ξi ≜ ω(i), with ω(i) ∼ p(ω). More explicitly,

k(x, x′) ≈ 1
L

L

∑
i=1

φω(i)(x)⊤φω(i)(x′), where ω(i) ∼ p(ω).

The corresponding Fourier feature decomposition is then

φ(x) ≜

√
2
L′




cos ω(1)⊤x
...

cos ω(L′/2)⊤x

sin ω(1)⊤x
...

sin ω(L′/2)⊤x




, (A.8)

where ω(i) ∼ p(ω), which we refer to as the mc Fourier features or,
more commonly, rff [206, 207].

Let us define ϕ(ω,b) : RD → R to be, as before, the projection inphase-shifted cosine
features some random direction ω ∼ p(ω), but shifted by some b ∼ U [0, 2π],

ϕ(ω,b)(x) ≜
√

2 cos (ω⊤x + b). (A.9)

We take the product of ϕ(ω,b) evaluated at inputs x and x′ to get

ϕ(ω,b)(x)ϕ(ω,b)(x
′) = 2 cos (ω⊤x + b) cos (ω⊤x′ + b) (A.10)

= cos (ω⊤(x + x′) + 2b) + cos (ω⊤(x− x′)),
(A.11)
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where, in the last line, we’ve used the product-to-sum trigonometric
identity (see Appendix A.A for details). By virtue of the periodicity
of sinusoids, taking the expectation of Equation (A.10) erases the first
term of Equation (A.11), giving

Ep(ω,b)[ϕ(ω,b)(x)ϕ(ω,b)(x
′)]

= Ep(ω)[cos (ω⊤(x− x′))] +
(((((((((((((((

Ep(ω,b)[cos (ω⊤(x + x′) + 2b)]

= k(x, x′).

See Appendix A.B for details. Hence, the product in Equation (A.10)
is also an unbiased estimator of the kernel. For brevity, we shall write
ϕi(x) to signify ϕ(ω(i),b(i))(x) for ω(i) ∼ p(ω) and b(i) ∼ U [0, 2π]. The
analogous Fourier feature decomposition ϕ : RD → RL is given by

ϕ(x) ≜

√
2
L




cos (ω(1)⊤x + b(1))
...

cos (ω(L)⊤x + b(L))


 =

1√
L




ϕ1(x)
...

ϕL(x)


 . (A.12)

We refer to this Fourier feature decomposition, originally proposed
by Rahimi and Recht [206], as the phase-shifted cosine variant of rff.
Both mc estimators outlined in this section introduces error that decays
at the rate of O(L−1/2), which, notably, is independent of the input
dimensionality. A theoretical comparison of the Fourier feature de-
compositions of Equations (A.8) and (A.12) is given by Sutherland and
Schneider [254], who report that for the se kernel, the latter produces
strictly higher variance and results in worse bounds.

a.3.2 Quasi-Monte Carlo

We can readily improve upon the convergence of mc by employing
quasi Monte Carlo (qmc), which uses deterministic low-discrepancy
sequences to construct samples. We refer to this family of Fourier
feature decompositions as quasi-random Fourier features (qrff) [5,
294].

In particular, qmc approximates following integral over the unit
hypercube,

∫

[0,1]D
f (u)du ≈ 1

L

L

∑
i=1

f (u(i)), (A.13)

by sequentially constructing the samples u(i) deterministically us-
ing low-discrepancy sequences, thereby ameliorating the undesirable
effects of samples forming clusters that commonly occurs when sam-
pling independently at random. The interested reader may wish to
refer to the manuscripts by Caflisch [27] and Dick, Kuo, and Sloan
[58] for a more complete treatment of the topic.

To approximate multi-dimensional integrals with a Gaussian mea- multi-dimensional
Gaussian integrals
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sure over RD, we can apply a change-of-variables based on the Gaus-
sian inverse cumulative distribution function (cdf), or quantile function,
to reduce it to an integral in the form of Equation (A.13). Suppose we
have a multivariate Gaussian density q(ω). Then we can write

∫

RD
q(ω) f (ω)dω =

∫

[0,1]D
f (Φ−1(u))du, (A.14)

where Φ−1 : [0, 1]D → R is the quantile function of q.
For non-Gaussian densities p(ω) in general, we can utilise impor-

tance sampling to cast our problem into the Gaussian integral of Equa-importance sampling

tion (A.14), by using a Gaussian q(ω) as the proposal distribution,

∫

RD
p(ω) f (ω)dω =

∫

RD
q(ω)

(
p(ω)

q(ω)
f (ω)

)
dω

=
∫

[0,1]D
r(Φ−1(u)) f (Φ−1(u))du,

where r(ω) ≜ p(ω)/q(ω) is the importance weight, or likelihood ratio.
From this, we arrive at the following Fourier feature decomposition,

k(t, 0) ≈ 1
L

L

∑
i=1

r(Φ−1(u(i))) cos (Φ−1(u(i)) · t)

= φ(x)⊤φ(x′),

where

φ(x) ≜

√
2
L′




√
r(Φ−1(u(1))) cos

(
Φ−1(u(1)) · x

)

...√
r(Φ−1(u(L′/2))) cos

(
Φ−1(u(L′/2)) · x

)
√

r(Φ−1(u(1))) sin
(

Φ−1(u(1)) · x
)

...√
r(Φ−1(u(L′/2))) sin

(
Φ−1(u(L′/2)) · x

)




.

a.3.3 Quadrature

We now introduce quadrature Fourier features (qff) [6, 50, 180, 183].
We first restrict our attention to the one-dimensional case and defer
our discussion of the multi-dimensional case when we introduce the
multi-dimensional generalisations of numerical quadrature, sometimes
referred to as cubature.

A quadrature formula that approximates the following integral by aGaussian-Christoffel
quadrature;

Gaussian quadrature
finite sum ∫ b

a
w(u) f (u)du ≈

L

∑
i=1

αi f (ξi) (A.15)
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is called a Gauss-Christoffel quadrature formula (or simply a Gaussian
quadrature formula) if it has maximum degree of exactness, i. e., if
Equation (A.15) is an exact equality whenever f is a polynomial of
degree 2L− 1 [80]. We refer to ξi as a the Christoffel abscissas and αi the
Christoffel weights associated with the weight function w(u). The case
of w(u) ≜ 1 on the interval [−1, 1] was first studied by Gauss [79], and
is now referred to as Gauss-Legendre quadrature. Other classical cases
are associated with the names of Jacobi, Laguerre, and Hermite. The
formulation based on orthogonal polynomials was advanced by Jacobi
[112]. A comprehensive though possibly now outdated review of the
topic of Gauss-Christoffel quadrature can be found in the landmark
survey of Gautschi [81].

a.3.3.1 Gauss-Hermite Quadrature

The weight function serves to help factor out unruly behaviour in the
integrand. Particularly relevant is the case of Gauss-Hermite quadra-
ture, in which the weight function of interest is w(u) ≜ e−u2

and Gauss-Hermite
quadraturethe interval of integration is (−∞, ∞). That is, we’re interested in

approximating integrals of the form
∫ ∞

−∞
e−u2

f (u)du (A.16)

The nodes ξi are roots of HL(u), the Hermite polynomial of degree L,
and the associated weights αi are given by

αi ≜
2L−1L!

√
π

L2[HL−1(ξi)]2
.

It is not hard to appreciate the power of this quadrature formula, for it
is trivial to apply it to the calculation of expectations under Gaussian
distributions, a quantity upon which many problems in statistical ml Gaussian

expectationsrely. In particular, we are often interested in computing the expected
value of f (ω) under p(ω) = N (ω | µ, σ2),

Ep(ω)[ f (ω)] =
∫ ∞

−∞
N (ω | µ, σ2) f (ω)dω (A.17)

=
1√

2πσ2

∫ ∞

−∞
e−
(

ω−µ√
2σ

)2

f (ω)dω.

Simply by making a change-of-variable u = ω−µ√
2σ
⇔ ω =

√
2σu + µ,

we can rewrite Equation (A.17) in the form of Equation (A.16),

Ep(ω)[ f (ω)] =
1√
π

∫ ∞

−∞
e−u2

g(u)du, (A.18)

where we’ve defined g(u) ≜ f (
√

2σu + µ). We thus have the following
quadrature formula:

Ep(ω)[ f (ω)] ≈ 1√
π

L

∑
i=1

αig(ξi).
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Recall that by Equation (2.41), assuming its spectral density p(ω)

is even symmetric, we can express a stationary kernel k(t, 0) as the
expected value of function f (ω) = cos(ωt) under p(ω). Let us first
focus on the case of the se kernel, the spectral density of which is givenKernel decomposition

of the se kernel based
on Gauss-Hermite

quadrature

in Equation (2.40) as a Gaussian, p(ω) = N
(
ω | 0, ℓ−2). Therefore, by

Equation (A.18), with g(u) = f
(√

2u/ℓ
)
= cos

(√
2ut/ℓ

)
, we can write

k(t, 0) =
1√
π

∫ ∞

−∞
e−u2

cos

(√
2ut
ℓ

)
du (A.19)

≈ 1√
π

L

∑
i=1

αi cos

(√
2ξit
ℓ

)
. (A.20)

By Equation (2.43), we have

cos

(√
2ξit
ℓ

)
= cos

(√
2ξi(x− x′)

ℓ

)

= φ(
√

2ξi/ℓ)(x)⊤φ(
√

2ξi/ℓ)(x′),

where φ(·)(x) is defined in Equation (2.42). Accordingly, as in Equa-
tion (A.7), we have the Fourier feature decomposition φ : R→ RL′ ,

φ(x) ≜
1

4
√

π




√
α1 cos

(√
2ξ1x
ℓ

)

...
√

αL cos
(√

2ξLx
ℓ

)

√
α1 sin

(√
2ξ1x
ℓ

)

...
√

αL sin
(√

2ξLx
ℓ

)




.

Extending this to kernels with non-Gaussian spectral densities can
be done using the importance sampling technique described in the
preceding section.

a.3.3.2 Gauss-Legendre Quadrature

Let us consider the classical case of Gauss-Legendre quadrature, inGauss-Legendre
quadrature which the weight function of interest is w(u) ≜ 1 and the interval

of integration is [−1, 1]. That is, we’re interested in approximating
integrals of the form ∫ 1

−1
f (u)du

The nodes ξi are roots of PL(u), the Legendre polynomial of degree L
normalized to give PL(1) = 1, and the associated weights ai are given
by

αi ≜
2(

1− ξ2
i

)
[P′L(ξi)]2

.
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An integral over [a, b] must be changed into an integral over [−1, 1] Change of interval

before applying Gauss-Legendre quadrature,

∫ b

a
f (ω)dω =

∫ T(1)

T(−1)
f (ω)dω =

∫ 1

−1
f (T(u))T′(u)du,

where T : [a, b]→ [−1, 1] is a differentiable function with a continuous
derivative. In particular, for integration over the infinite interval, we
can use the substitution T(u) = tan

(
π
2 u
)

to give

∫ ∞

−∞
f (ω)dω =

π

2

∫ 1

−1

f
(
tan

(
π
2 u
))

cos2
(

π
2 u
) du,

where we’ve used T′(u) = π
2

1
cos2( π

2 u)
. A myriad other choices are

also available. For instance, Mutnỳ and Krause [184] use T(u) ≜
cot
(

π
2 (u + 1)

)
to give

T′(u) = −π

2
1

sin2 (π
2 (u + 1)

) ,

and ∫ ∞

−∞
f (ω)dω =

π

2

∫ 1

−1

f
[
cot
(

π
2 (u + 1)

)]

sin2 (π
2 (u + 1)

) du.

Recall that in Gauss-Hermite quadrature, our integrand of interest
is f (ω) = cos(ωt). That is, the contribution of the spectral density
p(ω) is absorbed into the weight function. In contrast, when using
Gauss-Legendre quadrature, our integrand explicitly includes the
contribution from the spectral density, f (ω) = p(ω) cos(ωt). There-
fore, we can directly incorporate non-Gaussian spectral densities p(ω)

without needing to resort to importance sampling. However, unlike in
Gauss-Hermite quadrature, we will not be able to isolate potentially
deleterious effects of the spectral density from our approximation.

All in all, we have the Fourier feature decomposition φ : R→ RL′ ,

φ(x) ≜
√

π

2




√
α1 p(tan ( π

2 ξ1))
cos2( π

2 ξ1)
cos

(
tan

(
π
2 ξ1
)
· x
)

...√
αL p(tan ( π

2 ξL))
cos2( π

2 ξL)
cos

(
tan

(
π
2 ξL
)
· x
)

√
α1 p(tan ( π

2 ξ1))
cos2( π

2 ξ1)
sin
(
tan

(
π
2 ξ1
)
· x
)

...√
αL p(tan ( π

2 ξL))
cos2( π

2 ξL)
sin
(
tan

(
π
2 ξL
)
· x
)




.

The error of a Gaussian quadrature formula is as follows [248], Gaussian quadrature
error analysis∫ b

a
w(u) f (u)du−

L

∑
i=1

ai f (ξi) =
f (2L)(θ)

(2L)!
⟨pL, pL⟩, (A.21)
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for some θ ∈ (a, b) where pL is a monic orthogonal polynomial of
degree L, and ⟨·, ·⟩ is the scalar product associated with the weight
function w(u),

⟨p, q⟩ =
∫ b

a
w(u)p(u)q(u)du.

Let us now consider quadrature for functions of several variables,Cubature:
quadrature in

multiple dimensions f (u) = f (u1, . . . , uD).

For weight functions w that factorise as

w (∥u∥2) =
D

∏
d=1

w(ud), (A.22)

we have
∫

RD
w (∥u∥2) f (u)du =

∫
· · ·

∫ D

∏
d=1

w(ud) f (u1, . . . , uD)du1 · · ·duD

=
∫

w(uD)

(∫
w(uD−1) · · ·

(∫
w(u1) f (u1, . . . , uD)du1

)
· · ·duD−1

)
duD

≈
LD

∑
i=1

α
(D)
i

(∫
w(uD−1) · · ·

(∫
w(u1) f (u1, . . . , ξ

(D)
i )du1

)
· · ·duD−1

)

...

≈
L1

∑
i1=1
· · ·

LD−1

∑
iD−1=1

LD

∑
iD=1

α
(1)
i1
· · · α(D−1)

iD−1
α
(D)
iD

f (ξ(1)i1
, . . . , ξ

(D−1)
iD−1

, ξ
(D)
iD

),

(A.23)

where ξ
(d)
i and α

(d)
i are the Ld > 0 abscissa and weights for quadra-

ture along the dth dimension. In other words, for weight functions
that satisfy Equation (A.22), we can decompose its multi-dimensional
quadrature through repeated application of one-dimensional quadra-
ture along each dimension.

The nested sum of Equation (A.23) can be written as a single sum
over the elements of the D-ary Cartesian product of the quadrature
nodes along each dimension (ξ

(1)
1 · · · ξ

(1)
L1
), . . . , (ξ(D)

1 · · · ξ(D)
LD

), of which
there are in total ∏D

d=1 Ld. Assuming for simplicity that Ld = L for
all d = 1, . . . , D and some L > 0, then there are a total of of LD

quadrature nodes. That is, the number of nodes grows exponentially
in the input dimensionality.

The weight function in Gauss-Legendre quadrature trivially sat-
isfies Equation (A.22). It is easy to verify that it is also satisfied
by the weight function in Gauss-Hermite quadrature. Namely, for
w(u) ≜ e−u2

, we have

e−∥u∥
2
2 = e−∑D

d=1 u2
d =

D

∏
d=1

e−u2
d .
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a.3.3.3 Newton-Cotes Quadrature

Let us now consider an alternative to Gaussian quadrature, namely, the
quadrature rules of Newton and Cotes, which is obtained by replacing
the integrand with a suitable interpolating polynomial P(u). Consult Newton-Cotes

quadraturethe text of Stoer and Bulirsch [248] for a more complete treatment of
the subject. Consider a uniform partition of the closed interval [a, b]
with

ξi ≜ a + ih,

and step width h ≜ b−a
m , for some integer m > 0, and let Pm be the

interpolating polynomial of degree m or less with

Pm(ξi) = fi ≜ f (ξi)

for i = 0, 1, . . . , m. Lagrange’s interpolation formula gives

Pm(u) ≜
m

∑
i=0

fiLi(u), Li(u) ≜
m

∏
j=0
j ̸=i

u− ξ j

ξi − ξ j
.

Integration gives
∫ b

a
Pm(u)du = h

m

∑
i=0

αi f (ξi)

where the weights αi are some function strictly of m, and crucially not
dependent on the integrand f , nor on the boundaries of the interval,
a, b.

In the case of m = 2, we obtain the approximation Simpson’s rule

∫ b

a
f (u)du ≈

∫ b

a
P2(u)du =

h
3
( f (ξ0) + 4 f (ξ1) + f (ξ2)),

which is commonly known as Simpson’s rule.
Consider a step width h > 0 such that

b = a + L′h

for some positive even integer L′ = 2L, L > 0. We can apply Simpson’s
rule to each subinterval [ξ2k−2, ξ2k−1, ξ2k], where k = 1, . . . , L. Compound

Simpson’s rule∫ b

a
f (u)du =

L

∑
k=1

∫ ξ2k

ξ2k−2

f (u)du

≈ h
3

L

∑
k=1

[ f (ξ2k−2) + 4 f (ξ2k−1) + f (ξ2k)] (A.24)

≜ S [ f ].

We can rearrange by odd and even terms to get

S [ f ] =
h
3

(
4

L

∑
k=1

f (ξ2k−1) + 2
L

∑
k=1

f (ξ2k) + f (ξ0)− f (ξL′)

)
.
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Figure A.4: The integrand H(u) = e−u2
cos

(√
2ut
ℓ

)
which becomes increas-

ingly oscillatory as the lengthscale decreases ℓ = 4−k where
k = 0, 1, 2.

We can also write

S [ f ] =
L′

∑
i=0

γi f (ξi)

where

γi =





4
3 h i odd,
2
3 hci i even.

and ci =





1
2 i = 0 or i = L′,

1 0 < i < L′.

for i = 0, . . . , L′. Denoting the odd and even terms as

Sodd ≜
L

∑
k=1

f (ξ2k−1), (A.25)

Seven ≜
L

∑
k=1

f (ξ2k) +
f (ξ0)− f (ξL′)

2
(A.26)

=
L

∑
k=0

f (ξ2k)−
f (ξ0) + f (ξL′)

2
,

respectively, we can simplify Equation (A.24) as

S [ f ] =
h
3
(4 · Sodd + 2 · Seven) . (A.27)

Newton-Cotes error
analysis

a.3.3.4 Filon’s rule for highly-oscillatory integrals

Recall from Equation (A.19) that the integrand in which we’re inter-Highly-oscillatory
integrals



A.3 numerical integration for gp prior approximations 153

ested is

F(u) = e−u2
cos

(√
2ut
ℓ

)
(A.28)

See Figure A.4 for surface plots of this function at varying settings of
ℓ. More broadly, consider integrals of the form

∫ b

a
g(u) cos(ut)du, and

∫ b

a
g(u) sin(ut)du, (A.29)

or, more generally, ∫ b

a
g(u)eiut du, (A.30)

of which Equation (A.19) is clearly an instance.
An extension of Simpson’s rule that is aimed at dealing with highly- Filon’s rule

oscillatory integrals, known as Filon’s rule [69]. Consider integrands
of the form

f (u) = g(u) cos(ut)

Let θ ≜ ht so that 1/t = h/θ. We have

∫ b

a
g(u) cos(ut)du =

L

∑
k=1

∫ ξ2k

ξ2k−2

g(u) cos(ut)du

≈ 1
t

[
4
θ

(
sin θ

θ
− cos θ

) L

∑
k=1

f (ξ2k−1)

+
1
θ

(
1 + cos2 θ − 2 cos θ sin θ

θ

)(
2

L

∑
k=1

f (ξ2k) + f (ξ0)− f (ξL′)

)

+

(
1 +

cos θ sin θ

θ
− 2 sin2 θ

θ2

)
[g(ξL′) sin(ξL′ t)− g(ξ0) sin(ξ0t)]

]

=
h
θ3

[
4 (sin θ − θ cos θ)

L

∑
k=1

f (ξ2k−1)

+
(
θ(1 + cos2 θ)− 2 cos θ sin θ

)
(

2
L

∑
k=1

f (ξ2k) + f (ξ0)− f (ξL′)

)

+
(
θ2 + θ cos θ sin θ − 2 sin2 θ

)
[g(ξL′) sin(ξL′ t)− g(ξ0) sin(ξ0t)]

]

≜ F [g] (A.31)

Note that we can also write

F [g] =
L′

∑
i=0

γig(ξi)

+ γ (g(ξL′) sin (ξL′ t)− g(ξ0) sin (ξ0t))
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where

γi =





αh i odd

βhci i even
,

ci =





1
2 i = 0 or i = L′

1 0 < i < L′
.

for i = 0, . . . , L′.
Using Equations (A.25) and (A.26), we can simplify Equation (A.31)

to

F [g] =h [α · Sodd + β · Seven

+γ (g(ξL′) sin (ξL′ t)− g(ξ0) sin (ξ0t))]
(A.32)

where

α ≜
4
θ3 [sin θ − θ · cos θ] ,

β ≜
2
θ3

[
θ · (1 + cos2 θ)− 2 cos θ sin θ

]
,

γ ≜
1
θ3

[
θ2 + θ · cos θ sin θ − 2 sin2 θ

]
.

Now, by expanding α, β, and γ in powers of θ, we get

α =
4
3
− 2θ2

15
+

θ4

210
− θ6

11340
+

θ8

997920
− θ10

129729600
+ · · ·

β =
2
3
+

2θ2

15
− 4θ4

105
+

2θ6

567
− 4θ8

22275
+

4θ10

675675
− · · ·

γ =
2θ3

45
− 2θ5

315
+

2θ7

4725
− 8θ9

467775
+

4θ11

8513505
− · · ·

It is clear to see that as θ → 0 (or, equivalently, as t→ 0) we have

α→ 4
3

, β→ 2
3

, γ→ 0.

In other words, Filon’s rule of Equation (A.32) reduces exactly to
Simpson’s rule of Equation (A.27). This suggests that for sufficiently
small values of t, Simpson’s rule is just as good as Filon’s rule when it
comes to dealing with highly-oscillatory integrals. Of course, another
way to look at it is that Filon’s rule may actually be no better than
Simpson’s rule in this setting.

a.3.4 Other Approaches

Another notable approach is the orthogonal random features (orf) [41,
42, 298], which selects frequencies according a an appropriately scaled
random orthogonal matrix instead of a random Gaussian matrix. In
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Figure A.5: se kernel with variance 1 and lengthscale ℓ = 1/5, and various
approximations thereof, visualized on the domain [−3, 3]. In this
domain, apart from Gauss-Hermite quadrature, the difference
between quadrature methods is virtually indistinguishable for
L = 44 = 256.
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Figure A.6: se kernel with variance 1 and lengthscale ℓ = 1/5, and various
approximations thereof, visualized on the domain [−150, 150].
The advantages of Filon’s rule appear only to be realized when
|x− x′| > 100 where the spurious oscillations begin to attenuate.

particular, let’s define matrix W as the collection of L frequencies

sampled from the kernel’s spectral density, W =
[
ω1 · · ·ωL

]⊤
∈

RL×D. We can write Equation (A.8) as

φ(x) ≜

√
2
L′

[
cos (Wx)

sin (Wx)

]
.

Furthre, by Equation (A.8) and Table 2.1, the matrix W of rff can be
written as

W = M− 1
2 G

where G is a Gaussian random matrix. For orf, we assume L = D so
that G is a square matrix, and set

W ≜ M− 1
2 SQ,
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where Q is the orthogonal matrix such that QR = G for some upper
triangular matrix R, and S = diag(s1, · · · , sD) with si ∼ χD, where χD

denotes the χ-distribution1 with D degrees of freedom. The transfor-
mation by S has the effect of making the rows of SQ and G identically
distributed.

A number of relevant approaches, such as Fastfood [141], À la
Carte [297] and the Nyström approximation [287, 296], have been
excluded from the scope this work.

a.4 experiments

a.4.1 Prior Approximation

We’re interested in the relative error, defined as the Frobenius norm
of the difference between the kernel’s exact Gram matrix K, and
its approximation based on an Fourier feature decomposition ΦΦ⊤,
normalized by the Frobenius norm of K,

relative error ≜
∥K−ΦΦ⊤∥F

∥K∥F
.

We restrict our focus to the Fourier feature decompositions that have
been outlined in this report: rff and its phase-shifted cosine variant,
qff, specifically its variants based on Gaussian quadrature (Gauss-
Legendre, Gauss-Hermite), and Newton-Cotes quadrature (Simpson’s
rule), qrff with Sobol sequences, and finally, orf. We consider a
number of datasets, namely, motorcycle, iris, diabetes, boston,
wine, and breast cancer, and look at two kernels: the se and Matérn-
5/2 kernels both with decreasing lengthscales ℓ = 4−k for k = 0, 1, 2.

See Figures A.7 and A.8 for results on the se and Matérn-5/2 kernels,
respectively. For methods with an inherent source of randomness, we
report the mean and 95% confidence interval across 25 repetitions.

For the se kernel, the picture is clear: for problems of moderate
dimensionality (say, D < 5), Gaussian quadrature methods are far
more efficient than any competing method. Furthermore, in the case
of D = 1, the deleterious effects of small lengthscales are barely
noticeable. In all settings of the lengthscale, kernel decompositions
based on quadrature rapidly converges to the exact kernel, and require
orders of magnitude fewer features.

1 not to be confused with the χ2-distribution
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Figure A.7: Comparing the efficiency of various Fourier feature decomposi-
tions for the se kernel.
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In the case of D = 4, We see that Gauss-Hermite still outperforms
all other methods for settings of the lengthscale above ℓ = 2−4, though
perhaps less dramatically,

On the other hand, for the same dimensionality, Gauss-Legendre
already begins to perform worse than all other methods. In fact, in all
remaining problems (where dimensionality D > 5), Gauss-Legendre
performs orders of magnitude worse (by orders of 102 or more). For
the sake of readability, we’ve omitted the results of Gauss-Legendre
and Simpson as these distort the scale of the plot dramatically.

As we move on to higher dimensions, particular in D = 10, the
performance of Gauss-Hermite quadrature already degrades so sig-
nificantly that it has become the worst of all competing methods.
Furthermore, it becomes practically inapplicable beyond D = 13. In
dimensionality D ≥ 10 where Gauss-Hermite quadrature is still feasi-
ble, we see that its curves are truncated. This is because the errors are
reported for just two settings of number of features. Recall that the
number of features in multidimensional quadrature is LD for some
L > 0. When D ≥ 10, for any setting of L > 2, this clearly becomes
prohibitively large. Therefore, in such high-dimensional problems, we
are restricted to setting L ≤ 2. However, this is amounts to computing
up to just two abscissa along the real line and then taking their D-ary
Cartesian power to form D-dimensional quadrature nodes. Thus seen,
it is no surprise that it fails to yield good results.

Outside of quadrature methods, we see that Quasi-random performs
consistently well, in both low- and high-dimensional regimes. In low
dimensions, it is second only to quadrature methods; in high dimen-
sions, it consistently outperforms all competing methods. Therefore,
it’s safe to conclude that for the se kernel in low-dimensional settings,
one should prefer Gauss-Hermite qff and in high-dimensional settings
one should resort to qrff.

For the Matérn-5/2 kernel, the story is quite similar, with one major
exception: Quasi-random performs considerably worse and with far
higher variance, particularly in high dimensions. Recall that to extend
qrff to kernels non-Gaussian spectral densities we are required to re-
sort to importance sampling. Although this still results in an unbiased
estimator, the variance is now a function of the likelihood ratio r(·),
which is prone to taking on large values in high-dimensional settings.
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Figure A.8: Comparing the efficiency of various Fourier feature decomposi-
tions for the Matérn-5/2 kernel.
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a.4.2 Posterior Sample Approximation

To assess the quality of posterior samples, we follow the approach
of Wilson et al. [289], namely, by measuring the 2-Wasserstein dis-
tance [161] between the exact gp posterior and an empirical distribu-
tion constructed from samples.

0.0 0.5 1.0
x

−2

0

2
y

Figure A.9: An example a synthetic problem in 1D. In this illustration, there
are N = 26 crosses (‘×’) which represent the observations, and
T = 28 vertical notches along the horizontal axis which represent
the test, or query, points. The observations are generated using a
gp with a se kernel with unit variance and lengthscale ℓ = 2−4,
while the test points are sampled uniformly at random. The
blue curves are samples drawn from the exact gp posterior at
the test points. Similarly, the green curves are 24 samples drawn
from the weight-space approximate posterior, and the orange
curves are samples generated with decoupled sampling. The
kernel approximations are based on an rff decomposition using
L = 256 samples.

Toy datasets are synthesized as follows. The N training locations
X are sampled uniformly at random and their corresponding obser-
vations are generated from the prior y ∼ GP(0, Kff + β−1I) with
observation noise variance β−1 = 10−3, using the se kernel with unit
amplitude and lengthscales of decreasing order ℓ = 4−k for k = 0, 1, 2.
Likewise, the T test locations X∗ are sampled uniformly at random
from U [0, 1]T×D, where we set T = 26 = 64. The above is repeated to
generate D-dimensional datasets for D = 20, . . . , 24. See Figure A.9 for
an example problem in one dimension.

Consistent with the findings of Wilson et al. [289], we observe the
decoupled sampling scheme to be robust against variance starvation.
In particular, the distance remains largely the same irrespective of the
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training size N. Consequently, we only report results for the setting
N = 27 = 128.

To eliminate confounding factors, we restrict our attention to exact
gps using the se kernel with known and fixed hyperparameters, i. e.
the hyperparameters that were used to synthesise the observed data.
In total, 212 = 4, 096 samples of f∗ | y are used as unbiased estimates
(µ̂∗|f, Σ̂∗∗|f) of the exact posterior moments (µ∗|f, Σ∗∗|f) given in Equa-
tion (A.2). The 2-Wasserstein distances are then computed based on
these moments,

W2

(
N (µ∗|f, Σ∗∗|f),N (µ̂∗|f, Σ̂∗∗|f)

)2
.

This is computed both for samples from the weight-space approximate
posterior, and for samples generated with decoupled sampling, shown
in Figures A.10 and A.11, respectively.

We restrict our focus to the Fourier feature decompositions that have
been outlined in this chapter: rff, qff, specifically its variants based on
Gaussian quadrature (Gauss-Legendre, Gauss-Hermite), and Newton-
Cotes quadrature (Simpson’s rule), qrff with Sobol sequences, and
finally, orf.

Lastly, we report, for each combination of dimensionality D and
kernel lengthscale ℓ, the mean and 95% confidence interval across 5

repetitions.
As expected, for the weight-space approximation as pictured in Fig-

ure A.10, having a tighter approximation of the Fourier feature decom-
position to the kernel seems to have a large positive effect. Particularly,
we see that in low dimensionalities (D < 5) with sufficiently large
lengthscales, the distances are considerably lower when using qff

with Gauss-Hermite quadrature.
On the other hand, for the samples generated with decoupled sam-

pling as pictured in Figure A.11, the distances are far less discernible
from one another.

In the weight-space view, neither the mean nor the variance match
that of the exact posterior. However, as we improve the kernel approx-
imation (specifically, as we double the number of quadrature nodes),
we observe a dramatic improvement in the approximation. In the last
two panes (reading from left to right) with 27 and 28 nodes, the dif-
ference is virtually indistinguishable to the naked eye. In contrast, in
decoupled pathwise sampling, we have equality in expectation – that is,
the mean match up regardless of the quality of the kernel approxima-
tion. On the other hand, we do not have equality in distribution, so the
variance is still dependent on the quality of the kernel approximation.
We see that in the very beginning, with a few nodes, it already does
a fairly good job of approximating the variance outside the regions
in which the the observations are located. On the other hand, inside
such regions it appears to severely underestimate the variance. What
worse is that it doesn’t seen to get better as we improve the kernel
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approximation. Indeed, doubling the number of nodes does not seem
to change anything.

Increasing the number of nodes does seem to help, but only up to a
point. Beyond 28 nodes, it is doubtful whether the approximation will
improve. It is also unknowable, as this is around the limits of numerical
precision. Yet, even with this amount of nodes, the understimation of
the variance still persists.

We note, however, that it is difficult to draw conclusions using
the 2-Wasserstein distance with empirical distributions. Beyond the
numerical stability issues, note that even with samples from the exact
gp drawn using the conventional location-scale transform approach,
the distance based on empirical estimates are on the order of 10−2 (in
theory, it should be 0).

Alternatively, it may be worthwhile to instead consider the nlpd of
the samples under the exact gp posterior, or using the kl divergence.
In particular, the kl divergence between Gaussian distributions with
the same mean m but different covariances N (m, Σ0) and N (m, Σ1)

is

kl [N0 ∥ N1] =
1
2

[
ln |Σ1Σ−1

0 |+ tr
(

Σ−1
1 (Σ0 − Σ1)

)]
. (A.33)

Recall from Equations (A.3) and (A.6) that the covariance of a decou-
pled pathwise sample from a sparse gp posterior is

Σ0 ≜ Φ∗Φ⊤∗ − 2K∗uK−1
uu ΦΦ⊤∗ + K∗uK−1

uu ΦΦ⊤K−1
uu Ku∗,

while that of a sparse gp posterior is

Σ1 ≜ Σ∗∗|u = K∗∗ −K∗uK−1
uu Ku∗.

Further, the mean of both is

m ≜ µ∗|u = K∗uK−1
uu u.

Taking the kl divergence between Gaussians with these means and
covariances is an attractive alternative to the 2-Wasserstein distance
described above, since it is more numerically stable and can be com-
puted analytically without resorting to empirical estimates. In fact,
this author perceives no good reason to use empirical estimates, let
alone the 2-Wasserstein distance, when we have the exact moments m,
Σ0, and Σ1 readily available to us.

a.5 summary

We motivated the work summarised in this chapter by showing that
the quality of decoupled pathwise samples still depends crucially on
the quality of the kernel approximation.

We conducted a survey of existing Fourier feature decompositions
for approximating stationary kernels to provide a better understanding
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Figure A.10: Weight-space approximate posterior samples (se kernel).

of the tightness of these various approximations. In doing so, we also
made variations on existing schemes to construct new decompositions,
or expanded the applicability of existing decompositions to classes of
kernels beyond the se kernel.

We also highlighted a significant shortcoming with an existing
class of schemes, namely Gaussian quadrature, in dealing with small
lengthscales. Small lengthscales in effect lead to highly-oscillatory
integrals that are difficult to approximate. Unfortunately, efforts to
ameliorate these shortcomings came up short, as it is not analytically
possible to factorise the approximation into an inner product of feature
maps. Furthermore, there is evidence to suggest that the benefits of
more sophisticated schemes to deal with high-oscillations are only
realised at scales well outside the input domains in which we’re
typically interested for practical purposes.

Lastly, contrary to our motivating hypothesis, we did not find a
strong positive correlation between tightness of kernel approximation
and quality of decoupled pathwise samples. However, we also under-
scored the potential flaws of the existing methods to assess sample
quality, and emphasised that our empirical findings be taken with
a pinch of salt. We suggest in future work that more attention be
devoted to devising more principled methods for assessing sample
quality.
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Figure A.11: Samples generated using decoupled sampling (se kernel).



A D D E N D U M

a.a product-to-sum identity

The product-to-sum identity, which follows as an immediate conse-
quence of Equation (2.52), is given by

2 cos α cos β = cos (α + β) + cos (α− β). (A.34)

a.b zero in expectation

By the law of total expectation, we can rewrite the expectation as

Ep(ω,b)[cos (ω⊤(x + x′) + 2b)]

= Ep(ω)

[
E[cos (ω⊤(x + x′) + 2b) |ω]

]
.

For notational convenience, we set θ ≜ ω⊤(x + x′). The inner expecta-
tion evaluates to

E[cos (θ + 2b) |ω] =
∫ 2π

0
cos (θ + 2b)p(b)db

=
1

2π

∫ 2π

0
cos (θ + 2b)db

=
1

2π
sin (θ + 2b)

∣∣∣
2π

0

=
1

2π
[sin (θ + 4π)− sin (θ)] = 0

since the sine function is 2π-periodic, i. e., sin (θ + 2π · k) = sin (θ) for
any integer k.
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