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Additional context, analysis, and discussion has been included to
address the intricacies of how density-ratios relate to the probability
of improvement (pi) and expected improvement (ei), and to examine
the extension to this work known as likelihood-free bo (lfbo) [241].

5.1 introduction

We introduced Bayesian optimisation (bo) in Section 2.5 as a highly
effective approach for the global optimisation of expensive blackbox
functions [20, 228]. In particular, we saw how bo proposes candidate
solutions according to an acquisition function that encodes a degree of
balance between exploration and exploitation. At the heart of bo lies a
probabilistic surrogate model from which the acquisition function is
derived.

Among the many acquisition functions that have been devised,
the improvement-based ones, such as the pi and ei [117, 176] have
remained prevalent due in large to their effectiveness despite their
relative simplicity. Notably, while acquisition functions are generally
challenging to compute, let alone optimise [290], pi/ei offers a closed-
form expression when the posterior predictive density of the model
follows a Gaussian distribution. However, while this condition makes
these acquisition functions easier to work with, it can also preclude
the use of richer families of models, as one must ensure analytical
tractability of the predictive, often at the expense of expressiveness, or
otherwise by resorting to sampling-based approximations [7].

By virtue of its flexibility, desirable conjugacy properties, and ability
to produce well-calibrated predictive uncertainty, gp regression [286]
is a widely-used probabilistic model in bo. To extend gp-based bo

to problems with discrete variables [77], structures with conditional
dependencies [116], or to capture nonstationary phenomenon [238], it
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Figure 5.1: Optimising a synthetic function f (x) = sin(3x) + x2 − 0.7x with
observation noise ε ∼ N (0, 0.22). In the main pane, the noise-free
function is represented by the solid gray curve, and N = 27 noisy
observations are represented by the crosses ‘×’. Observations with
output y in the top-performing γ = 1/3 proportion are shown
in red; otherwise, they are shown in blue. Their corresponding
densities, ℓ(x) and g(x), respectively, are shown in the top pane.
Bayesian optimisation by density-ratio estimation (bore) exploits
the correspondence between the pi acquisition function and the
ratio of densities ℓ(x)/g(x).

is common to apply simple modifications to the covariance function,
as this can often be done without compromising the tractability of the
predictive. Suffice it to say, certain estimators, such as decision trees
in the case of discrete variables, are naturally better equipped to deal
with these scenarios. Indeed, to scale bo to problem settings that pro-
duce vast numbers of observations, such as in transfer learning [255],
existing approaches have resorted to alternative model families like
random forests (rfs) [111] and bnns [200, 237, 243]. However, these
are often bound by constraints and simplifying assumptions, or must
rely on Monte Carlo (mc) methods that make the acquisition function
more cumbersome to evaluate and optimise.

Recognising that the surrogate model primarily serves as a means to
construct the acquisition function, we shift the usual focus away from
the model and toward the acquisition function itself. To this end, we
seek an alternative formulation of the acquisition function, specifically,
one that potentially opens the door to more powerful estimators for
which the predictive density would otherwise be unwieldy or simply
intractable to compute. In particular, Bergstra et al. [14] demonstrate
that the pi function1 can be expressed as the relative ratio between two
densities [292]. To estimate this ratio, they propose a method known as
the tpe, which naturally handles discrete and tree-structured inputs,

1 In fact, they make the stronger claim that this holds true for ei, but this assertion
could be considered the outcome of spurious mathematical reasoning [75] – we
elaborate on these intricacies in Section 5.2.2.2.
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and scales linearly with the number of observations. However, in spite
of its many advantages, tpe is not without deficiencies.

In the work summarised in this chapter, we make the following
contributions: (i) We revisit the tpe approach from first principles
and identify its shortcomings in tackling the general dre problem
(Section 5.2). (ii) We propose a simple yet powerful alternative that
casts the computation of pi as probabilistic classification (Section 5.3).
This approach is built on the aforementioned link between pi and the
relative density-ratio, and the correspondence between dre and cpe.
As such, it retains the strengths of the tpe method while mitigating
many of its weaknesses. Perhaps most significantly, it enables one to
leverage virtually any state-of-the-art classification method available.
In Section 5.5, we demonstrate through extensive experiments that
our approach competes well with these methods on a diverse range of
problems.

5.2 optimisation policies and density-ratio estimation

5.2.1 Relative Density-Ratio

We introduced the ordinary density-ratio earlier in Section 2.3. Now let
us generalise this to what is commonly known as the relative density-
ratio [292]. Namely, for a given pair of densities ℓ(x) and g(x), their
γ-relative density-ratio is defined as

rγ(x) ≜
ℓ(x)

γℓ(x) + (1− γ)g(x)
, (5.1)

where γℓ(x) + (1− γ)g(x) denotes the γ-mixture density with mixing
proportion 0 ≤ γ < 1. Note that for γ = 0, we recover the ordinary
density-ratio, which we denote r0(x) ≜ ℓ(x)/g(x). Further, observe that
the relative ratio is related to the ordinary ratio, rγ(x) = hγ(r0(x)),
where

hγ(u) ≜
(

γ + u−1(1− γ)
)−1

for u > 0.

5.2.2 Improvement-based Acquisition Functions

We now discuss how the improvement-based acquisition functions
introduced in Section 2.5.2 relate to the ratio in Equation (5.1). First,
let the threshold τ be the γ-th quantile of the observed y values,
τ ≜ Φ−1(γ) where γ = Φ(τ) ≜ p(y ≤ τ;DN). Thereafter, let the
pair of densities be defined as ℓ(x) ≜ p (x | y ≤ τ;DN) and g(x) ≜
p (x | y > τ;DN). An illustrated example of this is shown in Figure 5.1.
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5.2.2.1 Probability of Improvement as a Density-Ratio

Recall from Section 2.5.2.1 that the pi criterion can be expressed as
αPI(x;DN , τ) = p(y ≤ τ | x,DN). By Bayes’ rule, we have

αPI(x;DN , τ) =
p(x | y ≤ τ;DN)p(y ≤ τ | DN)

p(x | DN)
.

By definition, the numerator is simply

p(x | y ≤ τ;DN)p(y ≤ τ | DN) = γ · ℓ(x),

while, similarly, the denominator is

p(x | DN) =
∫ ∞

−∞
p(x | y,DN)p(y | DN)dy

= ℓ(x)
∫ τ

−∞
p(y | DN)dy + g(x)

∫ ∞

τ
p(y | DN)dy

= γℓ(x) + (1− γ)g(x). (5.2)

Hence, the pi function can be expressed as the relative density-ratio,
up to a constant factor γ,

αPI

(
x;DN , Φ−1(γ)

)
∝ rγ(x). (5.3)

Crucially, this reduces the problem of maximising pi to that of max-
imising the relative density-ratio,

xN+1 = arg max
x∈X

αPI

(
x;DN , Φ−1(γ)

)
= arg max

x∈X
rγ(x). (5.4)

To estimate the unknown relative density-ratio, one can appeal to a
wide variety of approaches from the dre literature [251]. We broadly
refer to this strategy as Bayesian optimisation by density-ratio estima-
tion (bore).

5.2.2.2 Expected Improvement as a Density-Ratio?

Bergstra et al. [14] assert that, under certain additional assumptions,
the ei function can similarly be expressed as the relative density-ratio
up to some constant factor. It goes without saying that this directly
contradicts the results we have just presented, since clearly pi and ei

are by definition not equivalent.
This particular issue has sparked recent discussions, and we anal-

yse the arguments here. We proceed by reproducing the original
derivations of Bergstra et al. [14]. Recall from Equation (2.45) that the
ei function is defined as the expectation of the improvement utility



5.2 optimisation policies and density-ratio estimation 101

function UEI(y, τ) over the posterior predictive density p(y | x,DN).
Expanding this out, we have

αEI(x;DN , τ) ≜ Ep(y | x,DN)[UEI(y, τ)]

=
∫ ∞

−∞
UEI(y, τ)p(y | x,DN)dy

=
∫ τ

−∞
(τ − y)p(y | x,DN)dy

=
1

p(x | DN)

∫ τ

−∞
(τ − y)p(x | y,DN)p(y | DN)dy.

We’ve already simplified the denominator p(x | DN) in Equation (5.2),
and the numerator simplifies to

∫ τ

−∞
(τ − y)p(x | y,DN)p(y | DN)dy

≈ ℓ(x)
∫ τ

−∞
(τ − y)p(y | DN)dy (5.5)

= ℓ(x)
(

τ
∫ τ

−∞
p(y | DN)dy−

∫ τ

−∞
yp(y | DN)dy

)

= K · ℓ(x),

where
K ≜ γτ −

∫ τ

−∞
yp(y | DN)dy.

In contrast with the original derivation, there is not a strict equality
in Equation (5.5) because, in general, p(x | y,DN) ̸= p(x|y ≤ τ;DN) =

ℓ(x). That is to say, the conditional p(x | y,DN) is not constant wrt to
y. While Garnett [75] perceives this as a “minor mathematical error”
on the part of Bergstra et al. [14], it may also be intepreted as a strong
simplifying modelling assumption. Specifically, the assumption states
that p(x | y,DN) is piecewise constant where p(x | y,DN) = ℓ(x) for
y ≤ τ. This approximation is not unreasonable, especially when τ is
in close proximity to the global minimum y∗.

The interested reader is referred to the issues thread on the public
GitHub repository associated with the bo textbook by Garnett [75]
for further discussion. The discourse is further extended by Song and
Ermon [240] who subsequently proposed an alternative method [241]
that encompasses, in a stricter sense, both pi/ei, and, more generally,
any acquisition function that assumes the form of the expected utility
in Equation (2.45). The approach is named likelihood-free bo (lfbo)
by virtue of its ability to sidestep the cumbersome calculations that
such acquisition functions often entail. As we shall see in Section 5.3.3,
lfbo is similar to bore in spirit, but distinct in a few mathematical
particulars.

https://github.com/bayesoptbook/bayesoptbook.github.io/issues/10
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Figure 5.2: Gaussian densities (left) and their γ-relative density-ratios (right),
which diverges when γ = 0 and converges to 4 when γ = 1/4.

5.2.3 Tree-structured Parzen Estimator

The tree-structured Parzen estimator (tpe) [14] is an instance of the
bore framework that seeks to solve the optimisation problem of Equa-
tion (5.4) by taking the following approach:

1. Since rγ(x) = hγ(r0(x)) where hγ is strictly non-decreasing,
focus instead on maximising2 r0(x),

x∗ = arg max
x∈X

r0(x).

2. Estimate the ordinary density-ratio r0(x) by separately estimat-
ing its constituent numerator ℓ(x) and denominator g(x), using
a tree-based variant of kde [233].

It is not hard to see why tpe might be favorable compared to methods
based on gp regression – one now incurs an O(N) computational cost
as opposed to the O(N3) cost of gp posterior inference. Furthermore,
it is equipped to deal with tree-structured, mixed continuous, ordered,
and unordered discrete inputs. In spite of its advantages, tpe is not
without shortcomings.

5.2.4 Potential Pitfalls

The shortcomings of this approach are already well-documented in
the dre literature [251]. Nonetheless, we reiterate here a select few
that are particularly detrimental in the context of global optimisation.
Namely, the first major drawback of tpe lies within step 1:

singularities . Relying on the ordinary density-ratio can result
in numerical instabilities since it is unbounded – often diverging to

2 r0(x) denotes γ = 0 solely in rγ(x) of Equation (5.1) – it does not signify threshold
τ ≜ Φ−1(0), which would lead to density ℓ(x) containing no mass. We address this
subtlety in Section 5.A.
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infinity, even in simple toy scenarios (see Figure 5.2 for a simple
example). In contrast, the γ-relative density-ratio is always bounded
above by γ−1 when γ > 0 [292]. The other potential problems of tpe

lie within step 2:

vapnik’s principle . Conceptually, independently estimating the
densities is actually a more cumbersome approach that violates Vap-
nik’s principle – namely, that when solving a problem of interest, one
should refrain from solving a more general problem as an interme-
diate step [273]. In this instance, density estimation is a more general
problem that is arguably more difficult than density-ratio estimation
[123].

kernel bandwidth . kde depends crucially on the selection of
an appropriate kernel bandwidth, which is notoriously difficult [196,
229]. Furthermore, even with an optimal selection of a single fixed
bandwidth, it cannot simultaneously adapt to low- and high-density
regions [256].

error sensitivity. These difficulties are exacerbated by the fact
that one is required to select two bandwidths, whereby the optimal
bandwidth for one individual density is not necessarily appropriate
for estimating the density-ratio – indeed, it may even have deleterious
effects. This also makes the approach unforgiving to misspecification
of the respective estimators, particularly in that of the denominator
g(x), which has a disproportionately large influence on the resulting
density-ratio.

curse of dimensionality. For these reasons and more, kde

often falls short in high-dimensional regimes. In contrast, direct dre

methods have consistently been shown to scale better with dimension-
ality [250].

optimisation. Ultimately, we care not only about estimating the
density-ratio, but also optimising it wrt to inputs for the purpose of
candidate suggestion. Being nondifferentiable, the ratio of tpes is
cumbersome to optimise.

5.3 bayesian optimisation by probabilistic classifica-
tion

We propose a different approach to bore, importantly, one that circum-
vents the issues of tpe, by seeking to directly estimate the unknown
ratio rγ(x).

As we alluded to in Section 2.3, there exists a multitude of direct dre

methods. Here, we focus on the conceptually simple and widely-used
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method based n class-probability estimation (cpe) [15, 37, 170, 203,
251], which we first introduced in Section 2.3.2. In this section, we
extend the analysis to the more general case of the relative density-ratio,
and to settings in which the classification problem is unbalanced.

First, let π(x) = p(z = 1 | x) denote the class-posterior probability,
where z is the binary class label

z ≜





1 if y ≤ τ,

0 if y > τ.

By definition, we have ℓ(x) = p(x | z = 1) and g(x) = p(x | z = 0). We
plug these into Equation (5.1) and apply Bayes’ rule, letting the p(x)
terms cancel each other out to give

rγ(x) =
p(z = 1 | x)

p(z = 1)

(
γ · p(z = 1 | x)

p(z = 1)
+ (1− γ) · p(z = 0 | x)

p(z = 0)

)−1

(5.6)
Since, by definition, p(z = 1) = γ, Equation (5.6) simplifies to

rγ(x) = γ−1π(x). (5.7)

Refer to Section 5.B for derivations. Thus, Equation (5.7) establishes the
link between the class-posterior probability and the relative density-
ratio. In particular, the latter is equivalent to the former up to constant
factor γ−1.

The astute reader will recognise from Equation (5.3) that, in fact,

αPI

(
x;DN , Φ−1(γ)

)
= γ · rγ(x) = π(x).

Therefore, maximising the pi criterion amounts to maximising the
class-posterior probability π(x), which we can estimate using a prob-
abilistic classifier – a function πθ : X → [0, 1] parameterised by θ.
To recover the true class-posterior probability, we minimise a proper
scoring rule [85] such as the log loss

L̂(θ) ≜ − 1
N

(
N

∑
n=1

zn log πθ(xn)
N

∑
n=1

+ (1− zn) log (1− πθ(xn))

)
.

(5.8)
Thereafter, we can use πθ(x) as a proxy to the pi criterion,

πθ(x) ≈ αPI

(
x;DN , Φ−1(γ)

)
(5.9)

where the approximation is tight at θ∗ = arg minθ L̂(θ). Note L̂ is
an unbiased estimate of the log loss L that first appeared in Equa-
tion (5.13). Refer to Section 5.C for details.

Hence, in the so-called bo loop (summarised in Algorithm 2), we
alternately optimise (i) the classifier parameters θ wrt to the log loss
(to improve the approximation of Equation (5.9); Line 6), and (ii) the
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Algorithm 2: Bayesian optimisation by density-ratio estimation
(bore).

Input: blackbox f : X → R, proportion γ ∈ (0, 1), probabilistic
classifier πθ : X → [0, 1].

1 while under budget do
2 τ ← Φ−1(γ) // compute γ-th quantile of {yn}N

n=1

3 zn ← I[yn ≤ τ] for n = 1, . . . , N // assign labels

4 D̃N ← {(xn, zn)}N
n=1 // construct auxiliary dataset

5 /* update classifier by optimising parameters θ wrt log loss */

6 θ∗ ← arg minθ L̂(θ) // depends on D̃N , see Equation (5.8)

7 /* suggest candidate by optimising input x wrt classifier */

8 xN ← arg maxx∈X πθ∗(x) // see Equation (5.9)

9 yN ← f (xN) // evaluate blackbox function

10 DN ← DN−1 ∪ {(xN , yN)} // update dataset

11 N ← N + 1
12 end

classifier input x wrt to its output (to suggest the next candidate to
evaluate; Line 8).

In traditional gp-based pi, Line 8 typically consists of maximising
the pi criterion expressed in the form of Equation (2.48), while Line 6

consists of optimising the gp hyperparameters wrt the marginal like-
lihood. By analogy with our approach, the parameterised function
πθ(x) is itself an approximation to the pi criterion to be maximised
directly, while the approximation is tightened through by optimising
the classifier parameters wrt the log loss. In short, we have reduced
the problem of computing pi to that of learning a probabilistic classi-
fier, thereby unlocking a broad range of estimators beyond those so
far used in bo. Importantly, this enables one to employ virtually any
state-of-the-art classification method available and to parameterise
the classifier using arbitrarily expressive approximators that poten-
tially have the capacity to deal with non-linear, non-stationary, and
heteroscedastic phenomena frequently encountered in practice.

toy 1d example . To illustrate, in Figure 5.3, we animate Algo-
rithm 2 step by step on a synthetic problem for a half dozen iterations.
Specifically, we minimise the forrester function

f (x) ≜ (6x− 2)2 sin (12x− 4),

in the domain x ∈ [0, 1] with observation noise ε ∼ N (0, 0.052). The
algorithm is started with 4 random initial designs. Each subfigure
depicts the state after Lines 6 and 8 – namely, after updating and
maximising the classifier, respectively. In every subfigure, the main
pane depicts the noise-free function, represented by the solid gray
curve, and the set of observations, represented by crosses ‘×’. The
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location that was evaluated in the previous iteration is highlighted
with a gray outline. The right pane shows the empirical cdf (ecdf)
of the observed y values. The vertical dashed black line in this pane is
located at γ = 1

4 . The horizontal dashed black line is located at τ, the
value of y such that Φ(y) = 1

4 , i. e., τ = Φ−1 ( 1
4

)
. The instances below

this horizontal line are assigned binary label z = 1, while those above
are assigned z = 0. This is visualised in the bottom pane, alongside
the probabilistic classifier πθ(x), represented by the solid gray curve.
Finally, the maximiser of the classifier is represented by the vertical
solid green line – this denotes the location to be evaluated in the next
iteration.
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Figure 5.3: Step-by-step animation of Algorithm 2 on the forrester synthetic
problem.

5.3.1 Choice of Proportion γ

The proportion γ ∈ (0, 1) influences the explore-exploit trade-off.
Intuitively, a smaller setting of γ encourages exploitation and leads
to fewer modes and sharper peaks in the acquisition function. To see
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this, consider that there are by definition fewer candidate inputs x for
which its corresponding output y can be expected to improve over
the first quartile (γ = 1/4) of the observed output values than, say, the
third quartile (γ = 3/4). That being said, given that the class balance
rate is by definition γ, a value too close to 0 may lead to instabilities
in classifier learning. A potential strategy to combat this is to begin
with a perfect balance (γ = 1/2) and then to decay γ as optimisation
progresses.

In this work, we keep γ fixed throughout optimisation, which, on
the other hand, has the benefit of providing guarantees about how the
classification task evolves. In particular, in each iteration, after having
observed a new evaluation, we are guaranteed that the binary label of
at most one existing instance can flip. This property can be exploited
to make classifier learning of Line 6 more efficient. More specifically,
assuming the proportion γ is fixed across iterations, then, in each
iteration, we are guaranteed the following changes:

1. a new input and its corresponding output (xN , yN) will be added
to the dataset, thus

2. creating a shift in the rankings and, by extension, quantiles of
the observed y values, in turn

3. leading to the binary label of at most one instance to flip.

Therefore, between consecutive iterations, changes to the classification
dataset are fairly incremental. One can leverage this to make classifier
training more efficient, especially in families of classifiers for which
re-training entirely from scratch in each iteration is superfluous and
wasteful. See Figure 5.4 for an illustrative example, in which the task is
to optimise a contrived, synthetic “noise-only” function f (x) = 0 with
observation noise ε ∼ N (0, 1), and the proportion is set to γ = 1/4.

Some viable strategies for reducing per-iteration classier learning
overhead may include speeding up convergence by (i) importance
sampling (e. g., re-weighting new samples and those for which the
label have flipped), (ii) early-stopping (stop training early if either the
loss or accuracy have not changed for some number of epochs) and
(iii) annealing (decaying the number of epochs or batch-wise training
steps as optimisation progresses).

5.3.2 Choice of Probabilistic Classifier

We examine a few variations of bore that differ in the choice of
classifier and discuss their strengths and weaknesses across different
global optimisation problem settings.

multi-layer perceptrons . We propose bore-mlp, a variant
based on mlps. This choice is appealing not only for (i) its flexibility
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Figure 5.4: Optimising a synthetic “noise-only” function. As we iterate
through the bo loop from top to bottom, the array of targets
grows from left to right. In each iteration, the size of the array in-
creases by one, resulting in a re-shuffling of the rankings and, by
extension, quantiles. This in turn leads to the label for at most one
instance to flip. Hence, between consecutive iterations, changes
to the classification dataset are fairly incremental. This property
can be exploited to make classifier training more efficient in each
iteration.

and universal approximation guarantees [107] but because (ii) one
can easily adopt stochastic gradient descent (sgd) methods to scale
up its parameter learning [142], and (iii) it is differentiable end-to-
end, thus enabling the use of quasi-Newton methods such as l-bfgs

[150] for candidate suggestion. Lastly, since sgd is online by nature,
(iv) it is feasible to adapt weights from previous iterations instead
of training from scratch. A notable weakness is that mlps can be
over-parameterised and therefore considerably data-hungry.

tree-based ensembles . We consider two further variants: bore-
rf and bore-xgb, both based on ensembles of decision trees – namely,
random forest (rf) [19] and xgboost [34], respectively. These variants
are attractive since they inherit from decision trees the ability to (i)
deal with discrete and conditional inputs by design, (ii) work well
in high-dimensions, and (iii) are scalable and easily parallelizable.
Further, (iv) online extensions of rfs [222] may be applied to avoid
training from scratch. A caveat is that, since their response surfaces
are discontinuous and nondifferentiable, decision trees are difficult to
maximise. Therefore, we appeal to random search and evolutionary
strategies for candidate suggestion. Further details and a comparison
of various approaches is included in Section 5.5.5.2.

In theory, for the approximation of Equation (5.9) to be tight, the
classifier is required to produce well-calibrated probabilities [170]. A
potential drawback of the bore-rf variant is that rfs are generally
not trained by minimising a proper scoring rule. As such, additional
techniques may be necessary to improve calibration [189].
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gaussian processes . The last variant we consider is bore-gp,
based on a gp classifier (gpc) [285]. Like the gp regression model,
gpc offers (i) a high degree of flexibility, at least on smooth functions
up to moderate dimensionalities, and (ii) well-calibrated uncertainty
estimates (useful for marginalising out the hyperparameters from
the acquisition function, as we discuss in Section 5.G). On the other
hand, gpc not only loses one of the foremost appeals of gp regression,
namely, analytical tractability of the predictive, but it is also not neces-
sarily better equipped to deal with the more problematic settings we
have discuseed (discrete variables, high-dimensionalities, etc..), and
its scalability is contingent on the choice of inference approximation
utilised.

5.3.3 Likelihood-Free BO by Weighted Classification

We give a brief overview of the lfbo framework of Song and Ermon
[240]. Recall from Section 2.3.1 that every convex, lower-semicontinuous
function3 f can be represented in terms of its convex dual f ⋆,

f (u) = max
s

{
u f ′(s)− f ⋆( f ′(s))

}

For any function α : X → R, we can leverage this variational represen-
tation to obtain a lower bound on expectations of the form E[ f (α(x))],

Ep(x) [ f (α(x))] = Ep(x)

[
max

s

{
α(x) f ′(s)− f ⋆( f ′(s))

}]

≥ max
s

Ep(x)
[
α(x) f ′(s)− f ⋆( f ′(s))

]

≥ max
S:X→R

Ep(x)
[
α(x) f ′(S(x))− f ⋆( f ′(S(x)))

]
. (5.10)

Using the convexity of f , it’s easy to show that the maximiser of
Equation (5.10) is

S∗ ≜ arg max
S:X→R

Ep(x)
[
α(x) f ′(S(x))− f ⋆( f ′(S(x)))

]

= α

Let’s now optimise Equation (5.10) over a family of functions parame-
terised by θ,

θ∗ ≜ arg max
θ

Ep(x)
[
α(x) f ′(Sθ(x))− f ⋆( f ′(Sθ(x)))

]
.

This gives an approximation for function α(x),

Sθ(x) ≈ α(x),

3 we are overloading the notation f here, which has been used earlier in this chapter to
denote the unknown blackbox function we’re seeking to minimising
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that is tight at θ = θ∗. Suppose now the function of interest is the
expected utility α(x;DN , τ) ≜ Ep(y | x,DN)[U(y; τ)] from Equation (2.45).
Then we have

θ∗ ≜ arg max
θ

Ep(x)

[
Ep(y | x,DN)[U(y; τ)] f ′(Sθ(x))− f ⋆( f ′(Sθ(x)))

]

= arg max
θ

Ep(x,y)
[
U(y; τ) f ′(Sθ(x))− f ⋆( f ′(Sθ(x)))

]

= arg max
θ

Ep(x,y) [U(y; τ) log πθ(x) + log(1− πθ(x))] (5.11)

where we obtain Equation (5.11) by setting πθ(x) ≜ σ(log Sθ(x)) and
f (u) ≜ u log u− (u + 1) log (u + 1) from Equations (2.12) and (2.13).
We can view Equation (5.11) as a weighted objective function for binary
classification where the utility U(y; τ) acts as the nonnegative weight
and πθ(x) is the probabilistic classifier, as in Section 5.3. Finally, we
obtain an approximation to the acquisition function,

Sθ(x) =
πθ(x)

1− πθ(x)
≈ α(x; τ).

Like bore, this circumvents the need to explicitly solve the inte-
gral in Equation (2.45) and thus places no restrictions on the form
of p(y | x,DN). Furthermore, this approach can be applied to any
utility function U(y; τ), not only pi, but ei, and beyond.

5.4 related work

The literature on bo is vast and ever-expanding [20, 71, 75, 228]. Some
specific threads pertinent to our work are those that consider alter-
native modelling paradigms to gps, e. g., using nns to obtain greater
flexibility and scalability, as in bananas [281], ablr [200], bohami-
ann [243], and dngo [237], and using tree ensembles such as rfs to
handle discrete and conditional variables, as in smac [111]. To negoti-
ate the tractability of the predictive, these methods must either make
simplifications or resort to approximations. In contrast, by seeking to
directly approximate the acquisition function, bore is unencumbered
by such constraints. Refer to Section 5.G for an expanded discussion.

Beyond the classical improvement-based pi [134] and ei functions [117],
a multitude of acquisition functions has been devised, notably, the
ucb [244], kg [225], es [96], pes [102], and max-value es (mes) [279].
Nonetheless, the improvement-based criteria remain ubiquitous in
large because they are conceptually simple, easy to evaluate and opti-
mise, and consistently performs well in practice. As we examined in
Section 5.3.3, a variant of our model-agnostic approach to bo known
as lfbo [240] accomodates both of the improvement-based criteria,
and, more broadly, any acquisition function that can be expressed as
the expected utility in Equation (2.45).
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Density-ratio estimation is a well-established area with an exten-
sive literature [251]. In light of the drawbacks of the kde approach
discussing in Section 5.2.4, myriad alternatives have been proposed,
including kliep [250], kmm [88], ulsif [122], and rulsif [292]. In
this work, we restrict our focus on cpe, which stands out for its ef-
fectiveness and versatility, demonstrated by its widespread use in
various applications including covariate shift adaptation [15, 250, 268],
ebms [90, 92, 269], gans [86, 191], likelihood-free inference [64, 257,
267], and beyond. Particularly relevant among these is its applica-
tions in bed, a close relative of bo, in which it is similarly used to
approximate the expected utility function [129, 130].

5.5 experiments

We describe the experiments conducted to empirically evaluate our
method. To this end, we consider a variety of problems, ranging from
automated machine learning (automl), robotic arm control, to racing
line optimisation.

We provide comparisons against a comprehensive selection of state-
of-the-art baselines. Namely, across all problems, we consider ran-
dom search (rs) [13], gp-bo (using ei with γ = 0) [117], tpe [14],
and smac [111]. We also consider evolutionary strategies: differen-
tial evolution (de) [249] for problems with continuous domains, and
regularised evolution (re) [210] for those with discrete domains. Fur-
ther information about these baselines and the source code for their
implementations are included in Section 5.D.

To quantitatively assess performance we report the immediate re-
gret (in benchmarks for which the exact global minimum is known),
defined as the absolute error between the global minimum and the
lowest function value attained thus far. Unless otherwise stated we
report, for each benchmark and method, results aggregated across 100

replicated runs.
We set γ = 1/3 across all variants and benchmarks. For candidate

suggestion in the tree-based variants, we use rs with a function eval-
uation limit of 500 for problems with discrete domains, and de with
a limit of 2,000 for those with continuous domains. Our open-source
implementation is available on GitHub at ltiao/bore. Further details
concerning the experimental set-up and the implementation of each
variant are included in Section 5.E.

5.5.1 Neural Network Tuning (HPOBench)

First, we consider the problem of training a two-layer feed-forward
nn for regression. Specifically, a nn is trained for 100 epochs with
the adam optimiser [126], and the objective is the validation mse. The
hyperparameters are the initial learning rate, learning rate schedule, batch

https://github.com/ltiao/bore
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size, along with the layer-specific widths, activations, and dropout rates.
We consider four datasets: protein, naval, parkinsons, and slice,
and utilise HPOBench [128] which tabulates, for each dataset, the mses
resulting from all possible (62,208) configurations. Additional details
are included in Section 5.F.1, and the results are shown in Figure 5.5.
We see across all datasets that the bore-rf and -xgb variants consis-

0 100 200 300 400 500

fevals

10−6

10−5

10−4

10−3

10−2

10−1
im

m
ed

ia
te

va
li
d

re
gr

et

(a) protein

0 100 200 300 400 500

fevals

10−7

10−5

10−3

10−1

im
m

ed
ia

te
va

li
d

re
gr

et

RS

SMAC

TPE

RE

BORE-RF

GP-BO

BORE-XGB

BORE-MLP

BORE-GP

(b) naval

0 100 200 300 400 500

fevals

10−6

10−5

10−4

10−3

10−2

10−1

100

im
m

ed
ia

te
va

li
d

re
gr

et

(c) parkinsons

0 100 200 300 400 500

fevals

10−6

10−4

10−2

100

im
m

ed
ia

te
va

li
d

re
gr

et

(d) slice

Figure 5.5: Immediate regret over function evaluations on the HPOBench
neural network tuning problems (D = 9).

tently outperform all other baselines, converging rapidly toward the
global minimum after 1-2 hundred evaluations – in some cases, earlier
than any other baseline by over two hundred evaluations. Notably,
with the exception being bore-mlp on the parkinsons dataset, all
bore variants outperform tpe, in many cases by a sizable margin.
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Figure 5.6: Immediate regret over function evaluations on the NASBench201

nas problems (D = 6).
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5.5.2 Neural Architecture Search (NASBench201)

Next, we consider a nas problem, namely, that of designing a neural
cell. A cell is represented by a directed acyclic graph (dag) with 4

nodes, and the task is to assign an operation to each of the 6 possible
arcs from a set of five operations. We utilise NASBench201 [60], which
tabulates precomputed results from all possible 56 = 15, 625 combina-
tions for each of the three datasets: CIFAR-10, CIFAR-100 [132], and
ImageNet-16 [43]. Additional details are included in Section 5.F.2, and
the results are shown in Figure 5.6. We find across all datasets that
the bore variants consistently achieve the lowest final regret among
all baselines. Not only that, the bore variants, in particular bore-mlp,
maintains the lowest regret at anytime (i. e. at any optimisation iter-
ation), followed by bore-rf, then bore-xgb/-gp. In this problem, the
inputs are purely categorical, whereas in the previous problem they
are a mix of categorical and ordinal. For the bore-mlp variant, categor-
ical inputs are one-hot encoded, while ordinal inputs are handled by
simply rounding to their nearest integer index. The latter is known to
have shortcomings [77], and might explain why bore-mlp is the most
effective variant in this problem but the least effective in the previous
one.

5.5.3 Robot Arm Pushing

We consider the 14D control problem first studied by Wang and Jegelka
[279]. The problem is concerned with tuning the controllers of robot
hands to push objects to some desired locations. Specifically, there
are two robots, each tasked with manipulating an object. For each
robot, the control parameters include the location and orientation of
its hands, the moving direction, pushing speed, and duration. Due to the
prohibitively large number of function evaluations (∼10,000) required
to achieve reasonable performance, we omit all gp-based methods
from our comparisons on this benchmark. Further, we reduce the
number of replicated runs of each method to 50. Additional details are
included in Section 5.F.3, and the results are shown in Figure 5.7. We
see that bore-xgb attains the highest reward, followed by bore-rf and
tpe (which attain roughly the same performance), and then bore-mlp.
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Figure 5.8: Best lap times (in seconds) over function evaluations in the racing
line optimisation problem on various racetracks.
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5.5.4 Racing Line Optimisation.

We consider the problem of computing the optimal racing line for a
given track and vehicle with known dynamics. We adopt the set-up
of Jain and Morari [113], who consider the dynamics of miniature
scale cars traversing the tracks at uc berkeley and eth zürich. The
racing line is a trajectory determined by D waypoints placed along
the length of the track, where the ith waypoint deviates from the
centerline of the track by xi ∈

[
−W

2 , W
2

]
for some track width W. The

task is to minimise the lap time f (x), the minimum time required to
traverse the trajectory parameterised by x = [x1 · · · xD]

⊤. Additional
details are included in Section 5.F.4, and the results are shown in
Figure 5.8. First, we see that the bore variants consistently outperform
all baselines except for gp-bo. This is to be expected since the function
is continuous, smooth, and has ∼20 dimensions or less. Nonetheless,
we find that the bore-mlp variant performs as well as, or marginally
better than, gp-bo on two tracks. In particular, on the uc berkeley

track, we see that bore-mlp achieves the best lap times for the first
∼40 evaluations, and is caught up to by gp-bo in the final 10. On eth

zürich track b, bore-mlp consistently maintains a narrow lead.

5.5.5 Ablation Studies

5.5.5.1 Effects of calibration

As discussed in Section 5.3.2, calibrating the classifier may have a
profound effect on the tree-based variants of bore, namely, bore-rf

and bore-xgb. We consider two popular approaches [189], namely,
Platt scaling [201] and isotonic regression [299, 300]. The results shown
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Figure 5.9: Effects of calibrating classifiers in the bore-rf and bore-xgb vari-
ants. Results of racing line optimisation on the uc berkeley track.

in Figure 5.9 suggest that applying these calibration techniques may
actually have deleterious effects. However, this can also be adequately
explained by overfitting due to insufficient calibration samples. In this
particular problem, only a small number of function evaluations are
required for convergence to the global minimum, so this produces
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a small dataset with which to calibrate the classifier. In the case of
isotonic regression, typically ∼1,000 samples are required. Therefore,
it remains inconclusive whether calibration may in fact carry benefits,
particularly in problem settings that produce large amounts of data.

5.5.5.2 Effects of different strategies to maximise the acquisition function

We examine different strategies for maximising the acquisition func-
tion (i. e. the classifier) in the tree-based variants of bore, namely, bore-
rf and bore-xgb. Decision trees are difficult to maximise since their
response surfaces are discontinuous and nondifferentiable. Hence, we
consider the following methods: rs and de. For each method, we fur-
ther consider different evaluation budgets, i. e., limits on the number
of evaluations of the acquisition function. Specifically, we consider the
limits 50, 100, 200, and 500.
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Figure 5.10: A comparison of various acquisition optimisation strategies on
the NASBench201 problem.

In Figures 5.10a and 5.10b, we show the results of bore-rf and
bore-xgb, respectively, on the CIFAR-10 dataset of the NASBench201

benchmark, as described in Section 5.F.2. Each curve represents the
mean across 100 repeated runs. The opacity is proportional to the
function evaluation limit, with the most transparent having the lowest
limit and the most opaque having the highest limit. We find that rs

appears to outperform de by a narrow margin. Additionally, for de, a
higher evaluation limit appears to be somewhat beneficial, while the
opposite holds true for rs.

5.6 discussion

In this section, we discuss the limitations of our method and suggest
potential approaches to address them. We also discuss the significant
outcomes of this work at the time of writing and their potential impact.

exploration. Similar to the tpe method, bore generally has a
tendency to favour exploitation over exploration. In the case of tpe,
the maximiser of the acquisition function ℓ(x)/g(x) will be located at the
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mode of ℓ(x), which has mass concentrated around inputs for which its
output value is within the smallest proportion γ of all observed output
values (i. e. inputs with label z = 1). Recall the classical formulation
of ei from Equation (2.50) in which the explore-exploit trade-off is
explicitly encoded in mathematical terms. Assuming we had access
to its global optimum, then by design the solution is a candidate
that strikes a good balance between exploration and exploitation.
Indeed, by virtue of having lower predictive uncertainty, previously
evaluated candidates will tend to have lower acquisition values, which
helps to encourage exploration. In contrast, for tpe and bore, the
previously evaluated candidates labeled z = 1 will tend to retain
high acquisition values. Therefore, in the worst-case scenario, the
global optimum of the acquisition function may become stuck at
some local optimum of the blackbox function, or a point within some
neighborhood thereof. In practice, implementations of tpe avoid this
scenario by introducing stochasticity in the acquisition optimisation,
e. g., by randomly sampling from ℓ(x) and suggesting the sample
that maximises ℓ(x)/g(x). We surmise that bore was able to avoid such
pathological cases in our experiments due in part to the sources of
randomness inherent to the acquisition optimisation method of choice.

A further detail to note is that the labels z do not remain static
throughout optimisation. In other words, the classification dataset is
different for each new iteration. Recall that, by construction, only a
fraction γ of the observations can have positive labels z = 1. With
each iteration, observing a new value of y leads to a change in the
threshold τ. Since only a fraction γ of observations can lie below
this threshold, the labels of existing observations must accordingly
flip intermittently throughout optimisation. Thus, as the probabilis-
tic classifier πθ(x) adapts to these updates, the regions in which it
outputs high probabilities will also shift accordingly. Consequently,
the classifier response surface will either become multimodal (leading
to exploration) or become narrower and more sharply-peaked in the
same region (leading to exploitation).

Although not discussed in this thesis, the behavior described above
can make simple ϵ-greedy strategies particularly effective at stimulat-
ing exploration. Follow-up work by Oliveira, Tiao, and Ramos [193]
has considered batch extensions using Stein variational gradient de-
scent (svgd) [151], which encourages greater diversity in the query
batch and provides theoretical guarantees.

hyperparameter estimation. Firstly, a noteworthy consequence
of seeking to directly approximate pi under its alternative formula-
tion is that the classifier parameters θ in bore can be interpreted as
hyperparameters (in the same way that the parameters of the gp kernel
are hyperparameters), a deterministic treatment of which based on
point estimates can often be viable. For example, in the bore-mlp
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variant, θ consists of the layer weights, which we are able to esti-
mate using type-II maximum likelihood. In contrast, to utilise nns
in traditional bo, generally the layer weights ω are parameters that
must first be marginalised out in order to compute the predictive
pθ(y | x,DN) =

∫
pθ(y | x, ω)pθ(ω | DN)dω, while the hyperparame-

ters θ, consisting of e. g., the prior and likelihood precisions, may
optionally be marginalised out as well (though usually point esti-
mates suffice). Refer to Section 5.G for an expanded discussion on
this distinction. As with the gp hyperparameters in gp-bo, in order to
encourage exploration, it may be beneficial to consider placing a prior
on θ and marginalising out its uncertainty [236]. Further, compared
against gp-bo, a potential downside of bore is that there may be vastly
more meta-hyperparameters settings from which to choose. Whereas in
gp-bo these might consist of, e. g., the choice of kernel and its isotropy,
there are potentially many more possibilities in bore. In bore-mlp, this
may consist of, e. g., layer depth, widths, activations, etc. – the tuning
of which is often the reason one appeals to bo in the first place. While
we obtained remarkable results with the proposed variants without
needing to deviate from the sensible defaults, in general, for further
improvements in calibration and sample diversity, it may be beneficial
to consider marginalising out even the meta-hyperparameters [280].

Impact to Date

We discuss the impactful outcomes of this work to date. First, we
examine the real-world uses of bore. Despite the emergence of various
players in the field, toolkits such as hyperopt and Optuna still remain
the most widely used for hpo, especially in the domain of automl.
These libraries rely foremost on the tpe method as their default search
algorithm. Indeed, in many settings, e. g., those of high-dimensionality,
tpe often outperforms other paradigms such as evolutionary strategies
or traditional gp-based bo. Having addressed several of the most pro-
found shortcomings of tpe, bore has proved, in turn, to consistently
outperform tpe. This was not only demonstrated in this chapter but
has been independently observed in subsequent works. Thus seen,
bore stands poised to be an ideal candidate to replace tpe as the lead-
ing method for hyperparameter search. In fact, bore has already been
adopted as one of the primary search algorithms in SyneTune [224], a
rapidly growing open-source framework for hpo developed by Ama-
zon Research.

Second, we highlight bore as a new research avenue. Less than a
year since its initial publication, it has garnered recognition and is
set to be featured in the upcoming textbook on Bayesian optimisation
by Garnett [75], scheduled to be published later this year. Further-
more, prominent research labs have already embarked on extending
bore’s capabilities, such as extensions to multiple objectives [53] and

https://github.com/hyperopt/hyperopt
https://github.com/optuna/optuna
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generalisations to other acquisition functions [241], as we discussed in
Section 5.3.3.

5.7 summary

We have presented a novel methodology for bo based on the relation-
ship between improvement-based acquisition functions and proba-
bilistic classifier. This observation is made through the well-known
link between cpe and dre, and the lesser-known insight that pi can be
expressed as a relative density-ratio between two unknown distribu-
tions.

We discussed important ways in which tpe, an early attempt to
exploit the latter link, falls short. Further, we demonstrated that our
cpe-based approach to bore, in particular, our variants based on the
mlp, rf, xgboost, and gp classifiers, consistently outperform tpe,
and compete well against the state-of-the-art derivative-free global
optimisation methods.

Overall, the simplicity and effectiveness of bore make it a promising
approach for black-box optimisation, and its high degree of extensibil-
ity provides numerous exciting avenues for future work.
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5.a relative density-ratio : unabridged notation

In Section 5.2, for notational simplicity, we had excluded the depen-
dencies of ℓ, g and rγ on τ. Let us now define these densities more
explicitly as

ℓ(x; τ) ≜ p (x | y ≤ τ,DN) , and g(x; τ) ≜ p (x | y > τ,DN) ,

and accordingly, the γ-relative density-ratio from Equation (5.1) as

r(x; γ, τ) =
ℓ(x; τ)

γℓ(x; τ) + (1− γ)g(x; τ)
.

Recall from Equation (5.3) that

αPI

(
x;DN , Φ−1(γ)

)
∝ r
(

x; γ, Φ−1(γ)
)

. (5.12)

In step 1, Bergstra et al. [14] resort to optimising r(x; 0, Φ−1(γ)), which
is justified by the fact that

r(x; γ, Φ−1(γ)) = hγ

[
r
(

x; 0, Φ−1(γ)
)]

,

for strictly nondecreasing hγ. Note we have used a blue and orange
colour coding to emphasise the differences in the setting of γ (best
viewed on a computer screen). Recall that Φ−1(0) = minn yn corre-
sponds to the conventional setting of threshold τ. However, make no
mistake, for any γ > 0,

αPI

(
x;DN , Φ−1(0)

)
̸∝ r
(

x; 0, Φ−1(γ)
)

.

Therefore, given the numerical instabilities associated with this ap-
proach, as discussed in Section 5.2.4, there is no advantage to be gained
from taking this direction. Moreover, Equation (5.12) only holds for
γ > 0. To see this, suppose γ = 0, which gives

αPI

(
x;DN , Φ−1(0)

)
∝ r
(

x; 0, Φ−1(0)
)

.

However, since by definition ℓ
(
x; Φ−1(0)

)
has no mass, the rhs is

undefined.
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5.b class-posterior probability

We provide an unabridged derivation of the identity of Equation (5.7).
First, the γ-relative density ratio is given by

rγ(x) ≜
ℓ(x)

γℓ(x) + (1− γ)g(x)

=
p(x | z = 1)

γ · p(x | z = 1) + (1− γ) · p(x | z = 0)

=

(
p(z = 1 | x)���p(x)

p(z = 1)

)(
γ · p(z = 1 | x)���p(x)

p(z = 1)
+ (1− γ) · p(z = 0 | x)���p(x)

p(z = 0)

)−1

.

By construction, we have p(z = 1) ≜ p(y ≤ τ) = γ and π(x) ≜ p(z =

1 | x). Therefore,

rγ(x) = γ−1π(x)
(
�γ ·

π(x)

�γ
+����(1− γ) · 1− π(x)

���1− γ

)−1

= γ−1π(x).

Alternatively, we can also arrive at the same result by writing the
ordinary density ratio r0(x) in terms of π(x) and γ, which is well-
known to be

r0(x) =
(

γ

1− γ

)−1 π(x)
1− π(x)

.

Plugging this into function hγ, we get

rγ(x) = hγ(r0(x)) = hγ

((
γ

1− γ

)−1 π(x)
1− π(x)

)

=

(
γ + (1− γ)

(
γ

1− γ

)(
π(x)

1− π(x)

)−1
)−1

= γ−1

(
1 +

(
π(x)

1− π(x)

)−1
)−1

= γ−1π(x).

5.c log loss

Recall from Section 2.3.2 that the log loss, also known as the binary
cross-entropy (bce) loss, is given by

L(θ) ≜ −β ·Eℓ(x)[log πθ(x)]− (1− β) ·Eg(x)[log (1− πθ(x))]. (5.13)

The astute reader will have noticed that, unlike before, we’ve intro-
duced multipliers involving β, which denotes the class balance rate,
to account for potential class imbalance. Indeed, we recover the log
loss first introduced in Equation (2.11) when β = 1/2. In particular, let
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Nℓ and Ng be the sizes of the support of ℓ(x) and g(x), respectively.
Then, we have

β =
Nℓ

N
, and 1− β =

Ng

N
,

where N = Nℓ + Ng. In practice, we approximate the log loss L(θ) by
the empirical risk of Equation (5.8), given by

L̂(θ) ≜ − 1
N

(
N

∑
n=1

zn log πθ(xn) + (1− zn) log (1− πθ(xn))

)
.

In this section, we show that the approximation of Equation (5.9), that
is,

πθ(x) ≈ γ · rγ(x),

attains equality at θ∗ = arg minθL(θ).

5.c.1 Optimum

Taking the functional derivative of L∗ in Equation (5.13), we get

∂L∗
∂πθ

= −Eℓ(x)

[
β

πθ(x)

]
+ Eg(x)

[
1− β

1− πθ(x)

]

=
∫ (
−β

ℓ(x)
πθ(x)

+ (1− β)
g(x)

1− πθ(x)

)
dx

This integral evaluates to zero iff the integrand itself evaluates to zero.
Hence, we solve the following for πθ∗(x),

β
ℓ(x)

πθ∗(x)
= (1− β)

g(x)
1− πθ∗(x)

.

We re-arrange this expression to give

1− πθ∗(x)
πθ∗(x)

=

(
1− β

β

)
g(x)
ℓ(x)

⇔ 1
πθ∗(x)

− 1 =
βℓ(x) + (1− β)g(x)

βℓ(x)
− 1.

Finally, we add one to both sides and invert the result to give

πθ∗(x) =
βℓ(x)

βℓ(x) + (1− β)g(x)
= β · rβ(x).

Since, by definition β = γ, this leads to πθ∗(x) = γ · rγ(x) as required.

5.c.2 Empirical Risk Minimisation

For completeness, we show that the log loss L(θ) of Equation (5.13)
can be approximated by L̂(θ) of Equation (5.8). First, let ρ be the
permutation of the set {1, . . . , N}, i. e. the bijection from {1, . . . , N}
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to itself, such that yρ(n) ≤ τ if 0 < ρ(n) ≤ Nℓ, and yρ(n) > τ if
Nℓ < ρ(n) ≤ Ng. That is to say,

xρ(n) ∼




ℓ(x) if 0 < ρ(n) ≤ Nℓ,

g(x) if Nℓ < ρ(n) ≤ Ng.
and zρ(n) ≜





1 if 0 < ρ(n) ≤ Nℓ,

0 if Nℓ < ρ(n) ≤ Ng.

Then, we have

L(θ) ≜ − 1
N

(
Nℓ ·Eℓ(x)[log πθ(x)] + Ng ·Eg(x)[log (1− πθ(x))]

)

≈ − 1
N

(

��Nℓ ·
1

��Nℓ

Nℓ

∑
n=1

log πθ(xρ(n)) +�
�Ng ·

1

�
�Ng

Ng

∑
n=Nℓ+1

log (1− πθ(xρ(n)))

)

= − 1
N

(
N

∑
n=1

zρ(n) log πθ(xρ(n)) + (1− zρ(n)) log (1− πθ(xρ(n)))

)

= − 1
N

(
N

∑
n=1

zn log πθ(xn) + (1− zn) log (1− πθ(xn))

)
≜ L̂(θ),

as required.

5.d implementation of baselines

The software implementations of the baseline methods considered in
our comparisons are described in Table 5.D.1.

Table 5.D.1: Implementations of baseline methods.

Method Software Library URL (github.com/*) Notes

tpe HyperOpt hyperopt/hyperopt

smac SMAC3 automl/SMAC3

gp-bo AutoGluon awslabs/autogluon in
autogluon.searcher.GPFIFOSearcher

de - - custom implementation

re NASBench-101 automl/nas_benchmarks in
experiment_scripts/run_regularized_evolution.py

5.e experimental set-up and implementation details

hardware . In our experiments, we employ m4.xlarge aws ec2

instances, which have the following specifications:

• CPU: Intel(R) Xeon(R) E5-2676 v3 (4 Cores) @ 2.4 GHz

• Memory: 16GiB (DDR3)

https://github.com/hyperopt/hyperopt
https://github.com/automl/SMAC3
https://github.com/awslabs/autogluon
https://github.com/automl/nas_benchmarks
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software . Our method is implemented as a configuration generator
plug-in in the HpBandSter library of Falkner, Klein, and Hutter [68].
The code will be released as open-source software upon publication.

The implementations of the classifiers on which the proposed vari-
ants of bore are based are described in Table 5.E.1.

Table 5.E.1: Implementations of classifiers.

Model Software Library URL

Multi-layer perceptron (mlp) Keras keras.io

Random forest (rf) scikit-learn scikit-learn.org

Extreme gradient-boosting (xgboost) XGBoost xgboost.readthedocs.io

We set out with the aim of devising a practical method that is not
only agnostic to the of choice classifier, but also robust to underlying
implementation details – down to the choice of algorithmic settings.
Ideally, any instantiation of bore should work well out-of-the-box
without the need to tweak the sensible default settings that are typi-
cally provided by software libraries. Therefore, unless otherwise stated,
we emphasise that made no effort was made to adjust any settings and
all reported results were obtained using the defaults. For reproducibil-
ity, we explicitly enumerate them in turn for each of the proposed
variants.

5.e.1 BORE-RF

We limit our description to the most salient hyperparameters. We do
not deviate from the default settings which, at the time of this writing,
are:

• number of trees – 100

• minimum number of samples required to split an internal node (min_samples_split)
– 2

• maximum depth – unspecified (nodes are expanded until all leaves
contain less than min_samples_split samples)

5.e.2 BORE-XGB

• number of trees (boosting rounds) – 100

• learning rate (η) – 0.3

• minimum sum of instance weight (Hessian) needed in a child (min_child_weight)
– 1

• maximum depth – 6

https://github.com/automl/HpBandSter
keras.io
scikit-learn.org
xgboost.readthedocs.io
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5.e.3 BORE-MLP

In the bore-mlp variant, the classifier is a mlp with 2 hidden layers,
each with 32 units. We consistently found elu activations [44] to
be particularly effective for lower-dimensional problems, with relu

remaining otherwise the best choice. We optimise the weights with
adam [126] using batch size of B = 64. For candidate suggestion, we
optimise the input of the classifier wrt to its output using multi-started
l-bfgs with three random restarts.

epochs per iteration. To ensure the training time on bo it-
eration N is nonincreasing as a function of N, instead of directly
specifying the number of epochs (i. e. full passes over the data), we
specify the number of (batch-wise gradient) steps S to train for in
each iteration. Since the number of steps per epoch is M = ⌈N/B⌉, the
effective number of epochs on the N-th bo iteration is then E = ⌊S/M⌋.
For example, if S = 800 and B = 64, the number of epochs for iteration
N = 512 would be E = 100. As another example, for all 0 < N ≤ B
(i. e. we have yet to observe enough data to fill a batch), we have
E = S = 800. See Figure 5.E.1 for a plot of the effective number of
epochs against iterations for different settings of batch size B and num-
ber of steps per epoch S. Across all our experiments, we fix S = 100.
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oc

hs
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0 500 1000 1500 2000
iteration
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batch size = 32

0 500 1000 1500 2000
iteration

batch size = 64

steps per iteration
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Figure 5.E.1: Effective number of epochs on the nth iteration for different
settings of batch size B and number of steps per epoch S.

5.f details of benchmarks

5.f.1 HPOBench

The hyperparameters for the HPOBench problem and their ranges are
summarised in Table 5.F.1. All hyperparameters are discrete – either
ordered or unordered. All told, there are 6× 2× 4× 6× 2× 3× 6×
2× 3 = 66, 208 possible combinations. Further details on this problem
can be found in [128].

5.f.2 NASBench201

The hyperparameters for the HPOBench problem and their ranges
are summarised in Table 5.F.2. The operation associated with each of
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Table 5.F.1: Configuration space for HPOBench.

Hyperparameter Range

Initial learning rate (lr) {5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1}
lr schedule {cosine, fixed}
Batch size {23, 24, 25, 26}
Layer 1 Width {24, 25, 26, 27, 28, 29}

Activation {relu, tanh}
Dropout rate {0.0, 0.3, 0.6}

Layer 2 Width {24, 25, 26, 27, 28, 29}
Activation {relu, tanh}
Dropout rate {0.0, 0.3, 0.6}

Table 5.F.2: Configuration space for NASBench-201.

Hyperparameter Range

Arc 0 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 1 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 2 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 3 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 4 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}
Arc 5 {none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3}

the (4
2) = 6 arcs can belong to one of five categories. Hence, there are

56 = 15, 625 possible combinations of hyperparameter configurations.
Further details on this problem can be found in [60].

5.f.3 Robot pushing control

This problem is concerned with tuning the controllers of two robot
hands, with the goal of each pushing an object to some prescribed
goal location p(1)

g and p(2)
g , respectively. Let p(1)

s and p(2)
s denote the

specified starting positions, and p(1)
f and p(2)

f the final positions (the
latter of which are functions of the control parameters x). The reward
is defined as

R(x) ≜ ∥p(1)
g − p(1)

s ∥+ ∥p(2)
g − p(2)

s ∥︸ ︷︷ ︸
initial distances

− (∥p(1)
g − p(1)

f ∥+ ∥p
(2)
g − p(2)

f ∥)︸ ︷︷ ︸
final distances

,

which effectively quantifies the amount of progress made toward
pushing the objects to the desired goal. For each robot, the control
parameters include the location and orientation of its hands, the
pushing speed, moving direction and push duration. These parameters
and their ranges are summarised in Table 5.F.3.

Further details on this problem can be found in [278]. This simula-
tion is implemented with the Box2D library, and the associated code
repository can be found at https://github.com/zi-w/Ensemble-Bayesian-Optimisation.

https://box2d.org/
https://github.com/zi-w/Ensemble-Bayesian-Optimisation
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Table 5.F.3: Configuration space for the robot pushing control problem.

Hyperparameter Range

Robot 1 Position x [−5, 5]

Position y [−5, 5]

Angle θ [0, 2π]

Velocity vx [−10, 10]

Velocity vy [−10, 10]

Push Duration [2, 30]

Torque [−5, 5]

Robot 2 Position x [−5, 5]

Position y [−5, 5]

Angle θ [0, 2π]

Velocity vx [−10, 10]

Velocity vy [−10, 10]

Push Duration [2, 30]

Torque [−5, 5]

5.f.4 Racing Line Optimisation

This problem is concerned with finding the optimal racing line. Namely,
given a racetrack and a vehicle with known dynamics, the task is to de-
termine a trajectory around the track for which the minimum time re-
quired to traverse it is minimal. We adopt the set-up of Jain and Morari
[113], who consider 1:10 and 1:43 scale miniature remote-controlled
cars traversing tracks at UC Berkeley [148] and ETH Zürich [220],
respectively.

The trajectory is represented by a cubic spline parameterised by the
2D coordinates of D waypoints, each placed at locations along the
length of the track, where the ith waypoint deviates from the centerline
of the track by xi ∈

[
−W

2 , W
2

]
, for some track width W. Hence, the

parameters are the distances by which each waypoint deviates from
the centerline, x = [x1 · · · xD]

⊤.
Our blackbox function of interest, namely, the minimum time to

traverse a given trajectory, is determined by the solution to a convex op-
timisation problem involving partial differential equations (pdes) [149].
Further details on this problem can be found in [113], and the associ-
ated code repository can be found at https://github.com/jainachin/
bayesrace.

5.g parameters , hyperparameters , and meta-hyperparameters

We explicitly identify the parameters ω, hyperparameters θ, and meta-
hyperparameters λ in our approach, making clear their distinction,
examining their roles in comparison with other methods and discuss
their treatment.

https://github.com/jainachin/bayesrace
https://github.com/jainachin/bayesrace


5.G parameters , hyperparameters , and meta-hyperparameters 131

Table 5.G.1: A taxonomy of parameters, hyperparameters, and meta-
hyperparameters.

bo with Gaussian pro-
cesses (gps)

bo with Bayesian neural
networks (bnns)

bore with neural net-
works (nns)

Meta-hyperparameters λ kernel family, kernel
isotropy (ard), etc..

layer depth, widths, acti-
vations, etc..

prior precision α, likeli-
hood precision β, layer
depth, widths, activa-
tions, etc..

Hyperparameters θ kernel lengthscale and
amplitude, ℓ and σ, like-
lihood precision β

prior precision α, likeli-
hood precision β

weights W, biases b

Parameters ω None ∅ (nonparametric) weights W, biases b None ∅ (by design)

5.g.1 Parameters

Since we seek to directly approximate the acquisition function, our
method is by design free of parameters ω. By contrast, in classical bo,
the acquisition function is derived from the analytical properties of the
posterior predictive p(y | x, θ,DN). To compute this, the uncertainty
about parameters ω must be marginalised out

p(y | x, θ,DN) =
∫

p(y | x, ω, θ)p(ω | θ,DN)dω, (5.14)

where

p(ω | θ,DN) =
p(y |X, ω, θ)p(ω | θ)

p(y |X, θ)
.

While gps are free of parameters, the latent function values f must be
marginalised out

p(y | x, θ,DN) =
∫

p(y | x, f, θ)p(f | θ,DN)df.

In the case of gp regression, this is easily computed by applying
straightforward rules of Gaussian conditioning. Unfortunately, few
other models enjoy this convenience.

case study : As a concrete example, consider bnns. The param-
eters ω consist of the weights W and biases b in the nn, while the
hyperparameters θ consist of the prior and likelihood precisions, α and
β, respectively. In general, p(ω | DN , θ) is not analytically tractable.

• To work around this, dngo [237] and ablr [200] both constrain
the parameters ω to include the weights and biases of only the
final layer, WL and bL, and relegate those of all preceding layers,
W1:L−1 and b1:L−1, to the hyperparameters θ. This yields an exact
(Gaussian) expression for p(ω | DN , θ) and p(y | x, θ,DN). To
treat the hyperparameters, Perrone et al. [200] estimate W1:L−1,
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b1:L−1, α and β using type-II mle, while Snoek et al. [237] use a
combination of type-II mle and slice sampling [186].

• In contrast, bohamiann [243] makes no such simplifying distinc-
tions regarding the layer weights and biases. Consequently, they
must resort to sampling-based approximations of p(ω | θ,DN),
in their case by adopting sghmc [33].

In both approaches, compromises needed to be made in order to ne-
gotiate the computation of p(ω | θ,DN). This is not to mention the
problem of computing the posterior over the hyperparameters p(θ | DN),
which we discuss next. In contrast, bore avoids the problems asso-
ciated with computing the posterior predictive p(y | x, θ,DN), and,
by extension, the posterior p(ω | θ,DN) of Equation (5.14). Therefore,
such compromises are simply unnecessary.

5.g.2 Hyperparameters

For the sake of notational simplicity, we have thus far not been explicit
about how the acquisition function depends on the hyperparame-
ters θ and how they are handled. We first discuss generically how
hyperparameters θ are treated in bo. Refer to [228] for a full discus-
sion. In particular, we rewrite the acquisition function, expressed in
Equation (2.45), to explicitly include θ

α(x; θ,DN , τ) ≜ Ep(y | θ,x,DN)[U(y; τ)].

marginal acquisition function. Ultimately, one wishes to
maximise the marginal acquisition function A(x;DN , τ), which marginalises
out the uncertainty about the hyperparameters,

A(x;DN , τ) =
∫

α(x; θ,DN , τ)p(θ | DN)dθ,

where

p(θ | DN) =
p(y |X, θ)p(θ)

p(y |X) .

This consists of an expectation over the posterior p(θ | DN) which
is, generally speaking, analytically intractable. In practice, the most
straightforward way to compute A(x;DN , τ) is to approximate the
posterior using a delta measure centered at some point estimate θ̂,
either the type-II mle θ̂mle or the map estimate θ̂map. This leads to

A(x;DN , τ) ≈ α(x; θ̂,DN , τ).

Suffice it to say, sound uncertainty quantification is paramount to
guiding exploration. Since point estimates fail to capture uncertainty
about hyperparameters θ, it is often beneficial to turn instead to mc

estimation [236]

A(x;DN , τ) ≈ 1
S

S

∑
s=1

α(x; θ(s),DN , τ), θ(s) ∼ p(θ | DN).
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marginal class-posterior probabilities . Recall that the
likelihood of our model is

p(z | x, θ) ≜ Bern(z |πθ(x)),

or more succinctly πθ(x) = p(z = 1 | x, θ). We specify a prior p(θ) on
hyperparameters θ and marginalise out its uncertainty to produce our
analog to the marginal acquisition function

Π(x;DN) =
∫

πθ(x)p(θ | DN)dθ,

where

p(θ | DN) =
p(z |X, θ)p(θ)

p(z |X) .

As in the generic case, we are ultimately interested in maximising
the marginal class-posterior probabilities Π(x;DN). However, much
like A(x;DN , τ), the marginal Π(x;DN) is analytically intractable in
turn due to the intractability of p(θ | DN). In this work, we focus on
minimising the log loss of Equation (5.8), which is proportional to the
negative log-likelihood

L(θ) = − 1
N

N

∑
n=1

log p(zn | xn, θ) ∝ − log p(z |X, θ).

Therefore, we’re effectively performing the equivalent of type-II mle,

θ̂mle = arg min
θ

L(θ) = arg max
θ

log p(z |X, θ).

In the interest of improving exploration and, of particular interest
in our case, calibration of class-membership probabilities, it may be
beneficial to consider mc and other approximate inference methods [18,
74, 136]. This remains fertile ground for future work.

5.g.3 Meta-hyperparameters

In the case of bore-mlp, the meta-hyperparameters might consist of,
e. g., layer depth, widths, activations, etc. – the tuning of which is
often the reason one appeals to bo in the first place. For improvements
in calibration, and therefore sample diversity, it may be beneficial
to marginalise out the uncertainty about these, or considering some
approximation thereof, such as hyper-deep ensembles [280].




