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4.1 introduction

Learning correspondences between entities from different domains is
an important and challenging problem in ml, especially in the absence
of paired data. Consider for example the task of image-to-image trans-
lation where we want to learn a mapping from an image in a source
domain, such as a photograph of a natural scene, to a corresponding
image in a target domain, such as the realisation of such a scene in an
1860s celebrated artist’s signature impressionistic style. The shortage
of ground-truth pairings from the source domain to the target domain
renders standard supervised approaches infeasible, thus motivating
the need for unsupervised learning.

Within unsupervised approaches, a number of recently proposed
cyclegan methods have achieved remarkable success in addressing
this problem [125, 302]. As their name suggests, these approaches
are based upon two heuristics: (i) adversarial learning and (ii) cycle
consistency. The former, adversarial learning [86], allows images in the
source domain to be translated to output images that, to an auxiliary
discriminator, are indistinguishable from images in the target domain,
thereby matching their distributions. However, while distribution
matching is necessary, it is insufficient to guarantee one-to-one map-
pings between the images, as the problem is heavily under-constrained.
Briefly stated, the cycle-consistency is the constraint that an image
mapped to a target domain should be representable in the original
domain. It is this constraint that significantly shrinks the space of
possible solutions.

Beyond the empirical risk minimisation framework motivated intu-
itively by the two principles mentioned above, the original cyclegan

formulation lacks any further theoretical justification. Besides provid-
ing sound quantification of uncertainty, a lvm allows us to disentangle
our modelling assumptions from the inference machinery used to

73



74 cyclegans as a bayesian approximation

reason about the model variables. Interpreting standard methods from
a Bayesian perspective has contributed significantly to the understand-
ing of these methods and to the development of new approaches [74,
261].

In this chapter, we introduce implicit lvms, where the prior over hid-
den representations can be specified flexibly as an implicit distribution.
We develop a vi algorithm for this model based on minimisation of
the symmetric kl divergence between a variational joint and the exact
joint distribution, in contrast to traditional reverse KL minimisation,
which notoriously underestimate posterior’s / exact distribution’s
support. Lastly, we demonstrate that the state-of-the-art cyclegans as
proposed contemporaneously by Kim et al. [125] and Zhu et al. [302]
can be derived as a special case within our proposed vi framework,
thus establishing its connection to approximate Bayesian inference
methods.

4.2 implicit latent variable models

Lvms are an indispensable tool for uncovering the hidden representa-
tions of observed data. In a lvm, an observation x is assumed governed
by its underlying hidden variable z, which is drawn from a prior p(z)
and related to x through the likelihood pθ(x | z). Accordingly, the joint
density of x and z is given by

pθ(x, z) = pθ(x | z)p(z). (4.1)

Given data distribution q∗(x) and a finite collection X = {xn}N
n=1 of

observations xn ∼ q∗(x), and the set of corresponding latent variables
Z = {zn}N

n=1, the joint over all variables factorises as, pθ(X, Z) =

∏N
n=1 pθ(xn, zn).

xn

znλn θ

N

(a) Without amortised inference, each lo-
cal latent variable is governed by its
own local variational parameters.

xn

znϕ θ

N

(b) With amortized inference, we condi-
tion on observed variables and em-
ploy a single set of global variational
parameters.

Figure 4.1: Graphical representation of the generative model (solid) and the
recognition model (dashed).

The graphical representation of implicit lvms is depicted in Fig-
ure 4.1. Instead of approximating the exact posterior pθ(z | xn) for
each xn, using a separate variational distribution q(z; λn) with local
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variational parameters λn, we condition on x and optimise a single
set of variational parameters ϕ across all x ∼ q∗(x). Accordingly, the
variational distribution is denoted qϕ(z | x) ≜ q(z | x; ϕ).

4.2.1 Prescribed Likelihood

We specify the likelihood through a mapping Fθ that takes as input
random noise ξ and latent variable z,

x ∼ pθ(x | z) ⇔ x = Fθ(ξ; z), ξ ∼ p(ξ). (4.2)

We shall restrict our attention to prescribed likelihoods, where eval-
uation of their density is tractable. This requires that Fθ( · ; z) be a
diffeomorphism wrt ξ and density p(ξ) be tractable. For example,
when Fθ( · ; z) is a location-scale transform of noise ξ and p(ξ) is
Gaussian, we recover Gaussian observation models.

Our model specification is sufficiently general for encapsulating a
broad range of familiar latent variable models, even when we make
simplifying assumptions on the mapping Fθ( · ; z). In particular, con-
sider the special case where the mapping is an affine transformation
of the noise vector ξ,

Fθ(ξ; z) ≜ µθ(z) + Σθ(z)
1
2 ξ, ξ ∼ N (0, I),

for functions µθ and Σθ parameterised by θ that take z as input. To
simplify matters further, assume Σθ is constant wrt to its input, i. e.
Σθ(z) = Ψ for all z. The likelihood can then be written explicitly as

pθ(x | z) = N (x | µθ(z), Ψ).

factor analysis & probabilistic pca . In the case where the
mean function µθ is an affine transformation of z,

µθ(z) ≜ Wz + b,

and the covariance matrix is diagonal Ψ = diag(ψ2
1, . . . , ψ2

D), we re-
cover fa [8]. Furthermore, when the covariance matrix is isotropic
Ψ = ψ2I, we recover probabilistic principal component analysis (ppca)
[261]. In this example, the parameters θ consist of the factor loading
matrix W, the bias vector b and the covariance matrix Ψ.

deep and nonlinear latent variable models . By intro-
ducing nonlinearities to the mean function, we are able to recover
nonlinear factor analysis [139], nonlinear Gaussian sigmoid belief
networks [72], and other more sophisticated variants of deep latent
variable models. When the mapping is defined by a mlp, we can
recover simple instances of a variational autoencoder (vae) with a
Gaussian probabilistic decoder [127, 212].
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4.2.2 Implicit Prior

In lvms, the prior typically specified as a prescribed distribution,
e. g. a factorised Gaussian centered at zero. Oftentimes, however, the
practitioner possesses prior knowledge that simply cannot be embod-
ied within a prescribed distribution. To address this limitation, we
introduce implicit lvms, wherein the prior over latent variables is spec-
ified as an implicit distribution p∗(z), given only by a finite collection
Z∗ = {z∗m}M

m=1 of its samples,

z∗m ∼ p∗(z). (4.3)

This formulation offers the utmost degree of flexibility in the treat-
ment of prior information, the difficulties of which have hindered the
application of Bayesian statistics since the time of Laplace [115].

example : unpaired image-to-image translation . Sup-
pose we have collections of images X and Z∗, which are assumed to
be draws from the data distribution q∗(x) and implicit prior distri-
bution p∗(z), respectively. For example, these might be photographs
of natural landscapes and the paintings of Van Gogh. The goal of
unpaired image-to-image translation is to learn the correspondence
between variables x and z by capturing the underlying generative
process specified by mapping Fθ. This defines the likelihood pθ(x | z)
–a conditional density of x given z. Continuing with the above example,
the problem amounts to learning parameters θ of the mapping such
that this conditional yields photorealistic renderings of scenes por-
trayed in Van Gogh’s paintings. Furthermore, the resulting posterior
on the latent representation pθ(z | x) – a conditional density of z given
x – should produce renderings of landscape scenery in Van Gogh’s
iconic style.

4.3 variational inference

In this section, we describe the first component of our bipartite vi

framework. In traditional vi, one specifies a family Q of densities
over the latent variables and seeks the member q ∈ Q closest in kl

divergence to the exact posterior pθ(z | x) [17, 119, 276].

4.3.1 Prescribed Variational Posterior

We begin by describing the variational family q ∈ Q. We adopt the
common practice of amortising inference using an inference network
[83]. Namely, instead of approximating the exact posterior pθ(z | xn)

for each xn, using a separate variational distribution q(z; λn) with local
variational parameters λn, we condition on x and optimise a single set
of variational parameters ϕ across all x ∼ q∗(x).
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The variational distribution qϕ(z | x) is specified through an inverse
mapping Gϕ that takes as input random noise ϵ and observed variable
x,

z ∼ qϕ(z | x) ⇔ z = Gϕ(ϵ; x), ϵ ∼ p(ϵ). (4.4)

Just as mapping Fθ underpins the generative model, mapping Gϕ

underpins the recognition model [52]. As with the likelihood, we restrict
our attention to prescribed variational distributions.

As depicted in Figure 4.1b, the dependency relationship between
the variational parameters and the latent variables mirrors that of the
model parameters and observed variables. This symmetry is crucial to
the derivation of cyclegan later in Section 4.5.3.2.

4.3.2 Reverse KL Variational Objective

Minimising the reverse kl between the exact and variational poste-
rior is equivalent to maximising the elbo, or minimising its negative,
defined as

Lnelbo(θ, ϕ) ≜ Eq∗(x)qϕ(z | x)[− log pθ(x | z)]
+ Eq∗(x)kl

[
qϕ(z | x) ∥ p∗(z)

]
.

(4.5)

The first term of the elbo is the (negative) ell, defined as

Lnell(θ, ϕ) ≜ Eq∗(x)qϕ(z | x)[− log pθ(x | z)]. (4.6)

It is easy to perform stochastic gradient-based optimisation of this
term by applying the reparameterisation trick [127, 212],

Lnell(θ, ϕ) = Eq∗(x)p(ϵ)[− log pθ(x | Gϕ(ϵ; x))]. (4.7)

However, the second term – the kl divergence between qϕ(z | x) and
implicit prior p∗(z) – is not so straightforward. In particular, the kl

divergence can be expressed as

kl

[
qϕ(z | x) ∥ p∗(z)

]
≜ Eqϕ(z | x)[log r∗(z; x)], (4.8)

where r∗(z; x) is defined as the ratio of densities,

r∗(z; x) ≜
qϕ(z | x)

p∗(z)
. (4.9)

The dependence on this density ratio is problematic since the prior
p∗(z) is implicit and cannot be evaluated directly. To overcome this, we
resort to methods for approximating f -divergences between implicit
distributions, which are inextricably tied to dre [177, 251].
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4.3.3 Approximate Divergence Minimisation

Although we are primarily interested in estimating the kl diver-
gence of Equation (4.8), we give a generalised treatment that is ap-
plicable to all f -divergences [2, 47]. We denote a generic member
of the family of f -divergences between distributions p and q as
D f [p ∥ q] ≜ Ep[ f (q/p)], for some convex lower-semicontinuous func-
tion f : R+ → R.

Leveraging results from convex analysis, Nguyen, Wainwright, and
Jordan [188] devise a variational lower bound that estimates an f -
divergence through samples when either or both of the densities are
unavailable. Nowozin, Cseke, and Tomioka [191] extend this frame-
work to derive gan objectives that minimise arbitrary f -divergences.
These results underpin our methodology, and we restate a variant of
it here for completeness.

Theorem 4.3.1 (Nguyen, Wainwright, and Jordan [188]). Let f ⋆ be the
convex dual of f and R a class of functions with codomains equivalent to
the domain of f ′. We have the following lower bound on the f -divergence
between distributions p(u) and q(u),

D f [p(u) ∥ q(u)] ≥ max
r̂∈R
{Eq(u)[ f ′(r̂(u))]

−Ep(u)[ f ⋆( f ′(r̂(u)))]},
where equality is attained when r̂(u) is exactly the true density ratio r̂(u) =
q(u)/p(u).

Applying Theorem 4.3.1 to p∗(z) and qϕ(z | xn) for a given xn, and
optimising over a class of functions indexed by parameters ωn, we
obtain the following lower bound on their divergence,

D f
[
p∗(z) ∥ qϕ(z | xn)

]
≥ max

ωn

{
Eqϕ(z | xn)[ f ′(rωn(z))]−Ep∗(z)[ f ⋆( f ′(rωn(z)))]

}
.

While this provides a way to estimate any f -divergence between
implicit prior p∗(z) and variational distribution qϕ(z | xn) with only
samples, it also requires us to optimise a separate density ratio esti-
mator with parameters ωn for each observed xn. Instead, as with the
posterior approximation, we also amortise the density ratio estimator
by conditioning on x and optimising a single set of parameters α across
all x ∼ q∗(x). Accordingly, the estimator becomes rα(z; x), taking also
x as input. We now maximise an instance of the following generalised
objective,

Llatent
f (α |ϕ) ≜ Eq∗(x)qϕ(z | x)[ f ′(rα(z; x))]

−Eq∗(x)p∗(z)[ f ⋆( f ′(rα(z; x)))].
(4.10)

Corollary 4.3.2. We have the lower bound,

Eq∗(x)D f
[
p∗(z) ∥ qϕ(z | x)

]
≥ max

α
Llatent

f (α |ϕ), (4.11)

with equality at rα(z; x) = r∗(z; x).



4.4 symmetric joint-matching variational inference 79

density ratio estimation objective . We write Llatent
f (α |ϕ)

to denote the dre objective, wherein ϕ is fixed, while α is a free
parameter that varies as this objective is maximised, thus tightening the
bound of Equation (4.11) and the estimate of the density ratio rα(z; x).

divergence minimisation loss . Conversely, the divergence min-
imisation (dm) loss, denoted as Llatent

f (ϕ | α), is minimised wrt ϕ while
α remains fixed, thus approximately minimising the f -divergence. In
theory, this should be symmetric to the dre objective, Llatent

f (ϕ | α) ≜
Llatent

f (α |ϕ). However, alternative settings are often used in practice
to alleviate the problem of vanishing gradients, as we shall see in
Section 4.5.

By applying Theorem 4.3.2 for the setting fkl(u) ≜ u log u, we
instantiate a lower bound on the kl divergence of Equation (4.8) in
the following objective,

Llatent
kl

(α |ϕ) ≜ Eq∗(x)qϕ(z | x)[log rα(z; x)]−Eq∗(x)p∗(z)[rα(z; x)− 1].
(4.12)

As we discuss in Section 4.A, maximisation of the objective in Equa-
tion (4.12) is closely related to the kliep [250].

Now, we define the dm loss symmetrically to the dre objective in
Equation (4.12) – terms not involving ϕ are omitted,

Llatent
kl

(ϕ | α) ≜ Eq∗(x)qϕ(z | x)[log rα(z; x)] (4.13)

≈ Eq∗(x)kl

[
qϕ(z | x) ∥ p∗(z)

]
.

Combined with the ell, this estimate of the kl divergence yields
an approximation to the elbo where all terms are tractable. These
objectives are summarised in the bi-level optimisation problem below,

max
α

Llatent
kl

(α |ϕ), (4.14a)

min
ϕ,θ

Llatent
kl

(ϕ | α) + Lnell(θ, ϕ), (4.14b)

thus concluding the reverse kl minimisation component of our vi

framework.

4.4 symmetric joint-matching variational inference

We now complete the remaining component of our vi framework.
In the previous section, we gave an extension to classical vi, which
is fundamentally concerned with approximating the exact posterior.
Now, let us instead consider directly approximating the exact joint
pθ(x, z) through a variational joint qϕ(x, z).
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4.4.1 Variational Joint

Recall that q∗(x) denotes the empirical data distribution. We define
a variational approximation to the exact joint distribution of Equa-
tion (4.1) as

qϕ(x, z) ≜ qϕ(z | x)q∗(x). (4.15)

We approximate the exact joint by seeking a variational joint closest in
symmetric kl divergence, klsym

[
pθ(x, z) ∥ qϕ(x, z)

]
, where

klsym [p ∥ q] ≜ kl [p ∥ q] + kl [q ∥ p] . (4.16)

We first look at the reverse kl divergence (kl [q ∥ p]) term. When
expanded, we see that it is equivalent to the negative elbo up to
additive constants,

kl

[
qϕ(x, z) ∥ pθ(x, z)

]
≜ Eqϕ(x,z)

[
log qϕ(x, z)− log pθ(x, z)

]
(4.17)

= Lnelbo(θ, ϕ)−H[q∗(x)], (4.18)

where H[q∗(x)] ≜ Eq∗(x)[− log q∗(x)] is the entropy of q∗(x), a con-
stant wrt parameters θ and ϕ. Hence, minimising the kl divergence
of Equation (4.17) can be reduced to minimising Lnelbo(θ, ϕ) of Equa-
tion (4.5), without modification.

4.4.2 Forward KL Variational Objective

As for the forward kl divergence (kl [p ∥ q]) term, we have a similar
expansion,

kl

[
pθ(x, z) ∥ qϕ(x, z)

]
(4.19)

≜ Epθ(x,z)
[
log pθ(x, z)− log qϕ(x, z)

]
(4.20)

= Ep∗(z)pθ(x | z)[log pθ(x | z)− log qϕ(x, z)]−H[p∗(z)]. (4.21)

In analogy with the elbo, we introduce a new variational objective
that is minimised when the forward KL divergence of Equation (4.19)
is minimised. First we define the recognition model analog to the
marginal likelihood – the marginal posterior, or aggregated posterior,
given by qϕ(z) ≜

∫
qϕ(z | x)q∗(x)dx. It can be approximated by the

aggregate posterior lower bound (aplbo). For consistency, we give its
negative, written as

Lnaplbo(θ, ϕ) ≜ Ep∗(z)pθ(x | z)[− log qϕ(z | x)]
+ Ep∗(z)kl [pθ(x | z) ∥ q∗(x)] .

(4.22)

Furthermore, minimising the kl divergence of Equation (4.19) can be
reduced to minimising Lnaplbo(θ, ϕ),

kl

[
pθ(x, z) ∥ qϕ(x, z)

]
= Lnaplbo(θ, ϕ)−H[p∗(z)].
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The first term of the negative aplbo is the (negative) expected log
posterior (elp), defined as

Lnelp(θ, ϕ) ≜ Ep∗(z)pθ(x | z)[− log qϕ(z | x)]. (4.23)

We emphasise a key advantage of having considered the kl between
the joint distributions instead of between the posteriors. Computing
the forward kl divergence between the exact and approximate posterior
distribution is problematic, since it requires evaluating expectations
over the exact posterior pθ(z | x), the intractability of which is the
reason we appealed to approximate inference in the first place.

In contrast, the forward kl divergence between the exact and ap-
proximate joint poses no such difficulties – we are able to sidestep
the dependency on the exact posterior by expanding it into the form
of Equation (4.21). Furthermore, as with the elbo, we can perform
stochastic gradient-based optimisation of the elp term by applying
the same reparameterisation trick as in Equation (4.7).

Now, the kl divergence term of the aplbo in Equation (4.22) can also
be expressed as the expected logarithm of a density ratio r∗(x; z) ≜
pθ(x | z)/q∗(x) that involves an intractable density q∗(x) – the empirical
data distribution. To overcome this, we adopt the same approach as
outlined in Section 4.3.3. Namely, we apply Theorem 4.3.1 to q∗(x)
and pθ(x | z∗), and fit an amortised density ratio estimator rβ(x; z) to
r∗(x; z) by maximising an instance of the generalised objective,

Lobserved
f (β | θ) ≜ Ep∗(z)pθ(x | z)[ f ′(rβ(x; z))]

−Ep∗(z)q∗(x)[ f ⋆( f ′(rβ(x; z)))].
(4.24)

Corollary 4.4.1. We have the lower bound,

Ep∗(z)D f [q∗(x) ∥ pθ(x | z)] ≥ max
β
Lobserved

f (β | θ), (4.25)

with equality at rβ(x; z) = r∗(x; z).

By applying Theorem 4.4.1 with the previously defined fkl(u), we
obtain lower bound objective Lobserved

kl
(β | θ) on the kl divergence

term in Equation (4.22), and a corresponding dm loss Lobserved
kl

(θ | β),
analogous to the definitions of Llatent

kl
(α |ϕ) and Llatent

kl
(ϕ | α) in Equa-

tions (4.12) and (4.13), respectively. See Table 4.B.3 for a summary of
explicit definitions.

Hence, in addition to the bi-level optimisation problems of Equa-
tion (4.14) we have,

max
β

Lobserved
kl

(β | θ), (4.26a)

min
ϕ,θ

Lobserved
kl

(θ | β) + Lnelp(θ, ϕ). (4.26b)

As shown, the minimisations in Equations (4.14b) and (4.26b) corre-
sponds to minimisation of the symmetric kl over the joints klsym

[
pθ(x, z) ∥ qϕ(x, z)

]
,
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while the maximisations in Equations (4.14a) and (4.26a) approximates
the divergences, or more precisely, the density ratios involving implicit
distributions.

4.5 cyclegan as a special case

In this section, we demonstrate that cyclegan methods [125, 302] can
be instantiated under our proposed vi framework.

4.5.1 Basic CycleGAN Framework

To address the problem of unpaired image-to-image translation as
described in Section 4.2.2, the cyclegan model learns two mappings
µθ : z 7→ x and mϕ : x 7→ z by optimising two complementary classes
of objectives.

distribution matching . The first are the adversarial objectives,
which help match the output of mapping µθ to the empirical distribu-
tion q∗(x), and the output of mϕ to p∗(z). In particular, for mapping
mϕ, this involves introducing a discriminator Dα and the saddle-point
adversarial objective,

ℓreverse
gan

(α |ϕ) ≜ Ep∗(z)[log Dα(z)]

+ Eq∗(x)[log(1−Dα(mϕ(x)))],
(4.27)

while minimising it wrt parameters ϕ. This encourages mϕ to produce
realistic outputs z = mϕ(x), x ∼ q∗(x) which, to the discriminator
Dα, are “indistinguishable” from z∗ ∼ p∗(z). A similar adversarial
objective is defined for mapping µθ,

ℓforward
gan

(β | θ) ≜ Ep∗(x)[log Dβ(x)] + Ep∗(z)[log(1−Dβ(µθ(z)))].
(4.28)

cycle-consistency. Next are the cycle-consistency losses, which
enforce tight correspondence between domains by ensuring that re-
construction x′ = µθ(mϕ(x)) is close to the input x, and likewise for
mϕ(µθ(z)). This is achieved by minimising a reconstruction loss,

ℓreverse
const

(θ, ϕ) ≜ Eq∗(x)[∥x− µθ(mϕ(x))∥ρ
ρ], (4.29)

where ∥ · ∥ρ denotes the ℓρ-norm. A similar loss ℓforward
const

(θ, ϕ) is de-
fined for the reconstruction of z,

ℓforward
const

(θ, ϕ) ≜ Ep∗(z)[∥z−mϕ(µθ(z))∥
ρ
ρ]. (4.30)
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These objectives are summarised in the following set of optimisation
problems,

max
α

ℓreverse
gan

(α |ϕ), max
β

ℓforward
gan

(β | θ), (4.31a)

min
ϕ,θ

ℓreverse
gan

(ϕ | α) + ℓreverse
const

(θ, ϕ), (4.31b)

min
ϕ,θ

ℓforward
gan

(θ | β) + ℓforward
const

(θ, ϕ). (4.31c)

We now highlight the correspondences between these objectives and
those of our proposed vi framework, as summarised in the optimisa-
tion problems of Equations (4.14) and (4.26).

4.5.2 Cycle-consistency as Conditional Entropy Maximisation

We now demonstrate that minimising the cycle-consistency losses
corresponds to maximising the expected log likelihood and variational
posterior of Equations (4.6) and (4.23). This can be shown by instanti-
ating specific classes of pθ(x | z) and qϕ(z | x) that recover ℓreverse

const
(θ, ϕ)

and ℓforward
const

(θ, ϕ) from Lnell(θ, ϕ) and Lnelp(θ, ϕ), respectively.

Proposition 4.5.1. Consider a typical case where the likelihood and the
posterior approximation are both Gaussians,

pθ(x | z) ≜ N (x | µθ(z), τ−1I), qϕ(z | x) ≜ N (z |mϕ(x), t−1I).

In the limit as the posterior precision t tends to ∞, Lnell(θ, ϕ) approaches
ℓreverse

const
(θ, ϕ) for ρ = 2, up to constants1. More precisely,

Lnell(θ, ϕ)→ τ

2
Lreverse

const
(θ, ϕ) + const, as t→ ∞

Similarly, we have,

Lnelp(θ, ϕ)→ t
2
Lforward

const
(θ, ϕ) + const, as τ → ∞

Proof. First, note the generative mappings underlying the given Gaus-
sian likelihood and approximate posterior are

z ∼ pθ(x | z) ≜ N (x | µθ(z), τ−1I),

⇔ z = Fθ(ξ; z) ≜ µθ(z) + τ−
1
2 ξ, ξ ∼ N (0, I),

and,

x ∼ qϕ(z | x) ≜ N (z |mϕ(x), t−1I),

⇔ x = Gϕ(ϵ; x) ≜ mϕ(x) + t−
1
2 ϵ, ϵ ∼ N (0, I),

1 we obtain the same result for the case ρ = 1 by instead setting both the likelihood
and approximate posterior to be Laplace distributions.
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respectively. Thus, expanding out Lnell(θ, ϕ), we have

Lnell(θ, ϕ)

= Eq∗(x)qϕ(z | x)[− log pθ(x | z)]
= Eq∗(x)p(ϵ)[− log pθ(x | Gϕ(ϵ; x))]

=
τ

2
Eq∗(x)p(ϵ)[∥x− µθ(Gϕ(ϵ; x))∥2

2] +
D
2

log
2π

τ

=
τ

2
Eq∗(x)p(ϵ)[∥x− µθ(mϕ(x) + t−

1
2 ϵ)∥2

2] + const

→ τ

2
Eq∗(x)[∥x− µθ(mϕ(x))∥2

2] + const, as t→ ∞

=
τ

2
Lreverse

const
(θ, ϕ) + const.

A similar analysis can be carried out for Lnelp(θ, ϕ) and its determin-
istic counterpart ℓforward

const
(θ, ϕ).

Hence, the cycle-consistency losses can be seen as special cases of
the ell and elp with degenerate conditional distributions. Furthermore,
this sheds new light on the roles of the cycle-consistency losses. For
example, similar to the ell, the reverse consistency loss encourages
the conditional qϕ(z | x) to place its mass on configurations of latent
variables that can explain, or in this case, represent the data well.

4.5.3 Distribution Matching as Approximate Divergence Minimisation

We now discuss how the adversarial objectives ℓreverse
gan

(α |ϕ) and
ℓforward

gan
(β | θ) relate to the kl variational lower bounds of our frame-

work, Llatent
kl

(α |ϕ) and Lobserved
kl

(β | θ), respectively. To reduce clutter,
we restrict our discussion to the reverse objective ℓreverse

gan
(α |ϕ), as the

same reasoning readily applies to the forward ℓforward
gan

(β | θ).

4.5.3.1 As Density Ratio Estimation by Probabilistic Classification

Firstly, the connections between gans, divergence minimisation and
dre are well-established [177, 191, 251]. Although ℓreverse

gan
(α |ϕ) is a

scoring rule for probabilistic classification [85], one can readily show
that it can also be subsumed as an instance of the generalised varia-
tional lower bound Llatent

f (α |ϕ). Furthermore, similar to Llatent
kl

(α |ϕ),
maximising ℓreverse

gan
(α |ϕ) corresponds estimating the intractable den-

sity ratio r∗(z; x) of Equation (4.9).

Lemma 4.5.2. By setting fgan(u) = u log u− (u + 1) log(u + 1) in the
generalised objective Llatent

f (α |ϕ) of Equation (4.10), we instantiate the
objective

Lreverse
gan

(α |ϕ) ≜ Eq∗(x)p∗(z)[logDα(z; x)]

+ Eq∗(x)qϕ(z | x)[log(1−Dα(z; x))],
(4.32)

where Dα(z; x) ≜ 1− σ(log rα(z; x)), and σ is the logistic sigmoid function.
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Proof. To instantiate Lreverse
gan

(α |ϕ) of Equation (4.32), it suffices to
show that − f ∗

gan
( f ′

gan
(rα(z; x))) = logDα(z; x) and f ′

gan
(rα(z; x)) =

log(1−Dα(z; x)), where Dα(z; x) ≜ 1− σ(log rα(z; x)). First we com-
pute the first derivative f ′

gan
and the convex dual f ∗

gan
of fgan, which

involve straightforward calculations,

f ′
gan

(u) = log σ(log u), f ∗
gan

(t) = − log(1− exp t).

Thus, the composition ( f ∗
gan
◦ f ′

gan
) : u 7→ f ∗

gan
( f ′

gan
(u)) can be simpli-

fied as

f ∗
gan

( f ′
gan

(u)) = − log(1− exp f ′
gan

(u)) = − log(1− σ(log u)).

Applying f ′
gan

and f ∗
gan
◦ f ′

gan
to rα(z; x), we have

f ′
gan

(rα(z; x)) = log σ(log rα(z; x)) = log(1−Dα(z; x)),

and

f ∗
gan

( f ′
gan

(rα(z; x))) = − log(1− σ(log rα(z; x))) = − logDα(z; x),

respectively, as required.

Lemma 4.5.3. By specifying a discriminator Dα(z; x) = Dα(z) that ignores
auxiliary input x, and mapping Gϕ(ϵ; x) = mϕ(x) that ignores noise input
ϵ, Lreverse

gan
(α |ϕ) reduces to ℓreverse

gan
(α |ϕ).

Proof. Through reparameterisation of qϕ(z | x), we have

Lreverse
gan

(α |ϕ) = Eq∗(x)p∗(z)[logDα(z; x)]

+ Eq∗(x)p(ϵ)[log(1−Dα(Gϕ(ϵ; x); x))].

By specifying a discriminator Dα(z; x) = Dα(z) that ignores auxiliary
input x, and mapping Gϕ(ϵ; x) = mϕ(x) that ignores noise input ϵ,
this reduces to

Lreverse
gan

(α |ϕ) = Ep∗(z)[log Dα(z)] + Eq∗(x)[log(1−Dα(mϕ(x)))]

= ℓreverse
gan

(α |ϕ),

as required.

Proposition 4.5.4. The reverse adversarial objective ℓreverse
gan

(α |ϕ) can
be subsumed as an instance of the generalised variational lower bound
Llatent

f (α |ϕ).

Theorem 4.5.4 follows directly from Theorems 4.5.2 and 4.5.3.
Now, by Theorem 4.3.2, objective Lreverse

gan
(α |ϕ) is maximised ex-

actly when rα(z; x) = r∗(z; x). Hence, we can interpret Lreverse
gan

(α |ϕ)

as an objective for density-ratio estimation based on probabilistic
classification, while Llatent

kl
(α |ϕ) is an objective based on kliep.
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Now, the default choice of dm loss is Lreverse
gana

(ϕ | α) ≜ Lreverse
gan

(α |ϕ).
Omitting terms not involving ϕ, this is given by

Lreverse
gana

(ϕ | α) ≜ Eq∗(x)qϕ(z | x)[log(1−Dα(z; x))]. (4.33)

Unlike Llatent
kl

(ϕ | α), minimising Lreverse
gana

(ϕ | α) does not minimise the
kl divergence of Equation (4.8). Hence, the minimisation problem of
Equation (4.31b) does not correspond to that of Equation (4.14b), and
so does not maximise the elbo, or any known vi objective.

4.5.3.2 Recovering KL Through Alternative Divergence Minimisation Losses

Although the default choice of dm loss does not yield a tight corre-
spondence to vi, the existing cyclegan frameworks – and indeed
most gan-based approaches – arbitrarily select an alternative dm loss
that avoids vanishing gradients, and work well in practice. Hence, one
need only choose an alternative that does correspond to minimising
the kl divergence of Equation (4.8).

Firstly, of the cyclegan methods, Kim et al. [125] adopt the widely-
used dm loss originally suggested by Goodfellow et al. [86],

Lreverse
ganb

(ϕ | α) ≜ Eq∗(x)qϕ(z | x)[− logDα(z; x)], (4.34)

while [302] optimise the Least-Squares gan (lsgan) objectives of
[162].

Consider the combination of losses Lreverse
gana

(ϕ | α) and Lreverse
ganb

(ϕ | α),

Lreverse
ganc

(ϕ | α) ≜ Lreverse
gana

(ϕ | α) + Lreverse
ganb

(ϕ | α) (4.35)

= Eq∗(x)qϕ(z | x)

[
− log

Dα(z; x)
1−Dα(z; x)

]
.

Proposition 4.5.5. We have Lreverse
ganc

(ϕ | α) = Llatent
kl

(ϕ | α).

Theorem 4.5.5 was originally noted by Sønderby et al. [239] and is
shown below.

Proof. Expanding out Lreverse
ganC

(ϕ | α), we have

Lreverse
ganC

(ϕ | α) = Eq∗(x)qϕ(z | x)

[
− log

Dα(z; x)
1−Dα(z; x)

]

= Eq∗(x)qϕ(z | x)

[
log

σ(log rα(z; x))
1− σ(log rα(z; x))

]

= Eq∗(x)qϕ(z | x)[log rα(z; x)] ≜ Llatent
kl

(ϕ | α).

Hence, Lreverse
ganC

(ϕ | α) = Llatent
kl

(ϕ | α) as required.

Thus, for the setting of the dm loss Lreverse
ganc

(ϕ | α), the minimisation
problem of Equation (4.31b) corresponds to that of Equation (4.14b),
and thus maximises the elbo. This is equivalent to fitting the den-
sity ratio estimator rα(z; x) by maximising the objective Lreverse

gan
(α |ϕ)
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instead of Llatent
kl

(α |ϕ), and plugging it back into Llatent
kl

(ϕ | α) to ap-
proximately minimise the kl divergence of Equation (4.8). Such an
approach is prevalent among existing implicit vi methods [110, 172,
202, 267]

summary of theoretical connections We have that the
cycle-consistency losses are a specific instance of the ell and elp,
while the adversarial objectives are a specific instance of the variational
lower bound for divergence estimation, the maximisation of which
can be seen as density ratio estimation by probabilistic classification.
By explicitly setting the corresponding divergence minimisation loss
such that it leads to minimisation of the required kl divergence terms
in the elbo and aplbo, we subsume the cyclegan model under our
proposed vi framework. See Section 4.B for a succinct summary of the
relationships.

4.6 related work

The work presented in this chapter is closely related to prior efforts
to extend the scope of vi to implicit distributions. A recurring theme
throughout this line of work is approximation of the elbo by exploiting
the formal connection between density-ratio estimation and gans [177,
271]. The major axis of variation lies in the choice of the target density
ratio being estimated, as dictated by the problem setting. Makhzani et
al. [160] and Mescheder, Nowozin, and Geiger [172, avb] estimate the
density ratio qϕ(z | x)/p(z) in order to allow for expressive sample-based
posterior approximations qϕ(z | x). This corresponds to the reverse kl

minimisation component of our approach, in which we accomodate
implicit priors p(z).

Similar to bigan [62] and adversarially learned inference (ali) [59],
Tran, Ranganath, and Blei [267, lfvi] match a variational joint to an
exact joint distribution by estimating the density ratio pθ(x,z)/qϕ(x,z) and
use it to approximately minimise the kl divergence. Although this
formulation sidesteps the requirement of having any tractable densities,
their focus is on inference for models with intractable likelihoods
pθ(x | z) and on incorporating the implicit posteriors à la avb. In
constrast, in our framework, the joint’s intractability instead stems
from the implicit prior p∗(z). While we also approximate the exact
joint, we do so by minimising a symmetric kl divergence. Furthermore,
since both pθ(x | z) and qϕ(z | x) are prescribed, we evaluate them
explicitly as part of our loss functions and estimate a different set of
density ratios. This closely resembles the approach of Pu et al. [202],
which also minimises the symmetric kl divergence between the joints.
However, the focus of their method is not on implicit distributions
and thus specifies a different set of losses than ours – one that requires
solving more complicated density ratio estimation problems. More
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importantly, their method does not yield a tight correspondence to
cyclegan models.

A consequence of solely minimising the forward kl (as in frame-
works like ali) rather then minimising the symmetric kl (as in our
framework) is non-identifiability. This issue has been addressed by Li
et al. [144] who proposed a conditional-entropy regulariser to ali’s ob-
jective. Although Li et al. [144] examine the link between their method
and cyclegan, unlike our work, the relationship is not made ex-
plicit in a mathematically precise manner. Additionally, we derive our
full objective from the perspective of approximate Bayesian inference.
More recently, Chen et al. [31] also highlight issues associated with
ali concerning the quality of data generated from the inferred latent
variables. They propose a symmetric vae that simultaneously inherits
the realistic image generation capabilities of adversarial approaches
while overcoming the asymmetry limitations of the forward kl diver-
gence inherent in standard vaes. Additionally, unlike our approach,
they do not provide an explicit relationship with cyclegans.

Finally, similar to InfoGAN [35] and veegan [245], the forward kl

minimisation component of our method also optimises a model of the
latent variables, which is reminiscent of the wake-sleep algorithm for
training Helmholtz machines [52]. This is discussed further by Hu et al.
[109], who provide a comprehensive treatment of the links between
the work mentioned in this section and importantly, the symmetric
perspective of generation and recognition that underpins our approach.

4.7 experiments

synthetic data . First we consider the problem of reducing the
dimensionality of the mnist dataset to a 2D latent space, wherein
the prior distribution on the latent representations is specified by its
samples (shown in Figure 4.2a). This “banana-shaped distribution”
is a commonly used testbed for adaptive mcmc methods [93, 264].
Its samples can be generated by drawing from a bivariate Gaussian
with unit variances and correlation ρ = 0.95, and transforming them
through mapping H(z1, z2) ≜ [z1, z2 − z2

1 − 1]T. While the density of
this distribution can be computed, it is withheld from our algorithm
and used only in the vae baseline, which does not permit implicit
distributions.

Qualitative and quantitative results are given Figure 4.2 and Ta-
ble 4.1, which demonstrate superior performance to competing ap-
proaches. Observe that instances of the various digit classes are disen-
tangled in this latent space, while still closely matching the shape of
the prior distribution, despite having only access to its samples. The
resulting manifold of reconstructions is depicted in Figure 4.2c.

In Table 4.1, we report the mean-squared error (mse) on the recon-
structions of observations from the held-out test set and benchmark
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Table 4.1: Mean-squared errors of reconstructions.

Method mse z mse x

sjmvi (ours) 0.17 0.04

vae [127] 0.88 0.04

avb [172] 0.29 0.04

against vae / avb. Also, for the joint approximation to properly match
the support of the exact joint, the latent codes should also be rep-
resentable by its corresponding observation. Hence, we also report
the mse between samples from the prior and their reconstructions.
While we find no improvements on reconstruction quality of observa-
tions, our method significantly outperforms others in reconstructing
latent codes, suggesting our method has greater capacity to faithfully
approximate the exact joint.
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Figure 4.2: Visualisation of 2D latent space and the corresponding observed
space manifold.Instances of the various digit classes are disentan-
gled in this latent space, while still closely matching the shape of
the prior distribution, despite having only access to its samples .

image-to-image translation. We apply our method to the
task of transferring features between images of faces on the CelebA
dataset [152]. We consider the case where one feature differs between
domains. In particular, distributions q∗(x) and q∗(z) are specified by
images of women with blond and black hair, respectively. We spec-
ify both pθ(x | z) and qϕ(z | x) as a Laplace distribution, with fixed
variance, and mean functions µθ(z) and mϕ(x) defined by neural net-
works. Their architectures, as well as those of discriminators Dα(z; x)
and Dβ(x; z) are defined in the same way as in [302]. In Figure 4.3, we
show the outputs of the mean functions on samples from a hold-out
test set, after training for 10 epochs. From Figure 4.3b, we see that
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given datapoints x (top) we’re able to learn a posterior over latent
representations z in the other domain (mean is shown in middle).
Furthermore, these latent representations are configured so as to max-
imise the likelihood of observing the original data, as evident from the
reconstructions (bottom). Refer to appendix Figure 4.4 for qualitative
results produced by the cyclegan baseline approach [125, 302].
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(a) Samples from the prior (top), mean of the likelihood (middle), and the mean
reconstruction (bottom).
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(b) Samples from the data (top), mean of the posterior (middle), and the mean
reconstruction (bottom).

Figure 4.3: Image-to-image translation (blond to black hair) on CelebA
dataset [152] performed by our proposed approach.

4.8 summary

In this chapter, we’ve provided a theoretical treatment of the link
between cyclegans and approximate Bayesian inference. In short,
samples from the two domains correspond respectively to those drawn
from the data and implicit prior distribution in a implicit lvm (ilvm).
Parameter learning in cyclegans corresponds to approximate infer-
ence in this ilvm under our proposed vi framework. The forward and
reverse mappings in cyclegans arise naturally in the generative and
recognition models, while the cycle-consistency constraints correspond
to their log probabilities, and the adversarial losses are approxima-
tions to an f -divergence. By lifting the limitations of prescribed prior
distributions in favour of arbitrarily flexible implicit distributions, we
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(a) Samples from the prior (top), output of mapping (middle), and the reconstruction
(bottom).
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(b) Samples from the data (top), output of mapping (middle), and the reconstruction
(bottom).

Figure 4.4: Image-to-image translation (blond to black hair) on CelebA
dataset [152] performed by the baseline cyclegan method.

can discover different perspectives on existing learning methods and
provide more flexible approaches to probabilistic modelling.





A D D E N D U M

4.a relation to kl importance estimation procedure

(kliep)

We now discuss the connections to kliep [250]. Consider the same
problem setting as in Section 4.3.3 where we wish to use a parame-
terised function rα to estimate the exact density ratio,

rα(z; x) ≈ r∗(z; x) ≜
qϕ(z | x)

p∗(z)
.

We can view rα(z; x) as the correction factor required for p∗(z) to
match qϕ(z | x). This gives rise to an estimator of qϕ(z | x),

qα(z | x) ≜ rα(z; x)p∗(z) ≈ qϕ(z | x).

Although in our specific problem setting, the density qϕ(z | x) is
tractable, we nonetheless fit an auxiliary model qα(z | x) to it as a
means of fitting the underlying density ratio estimator rα(z; x).

In particular, consider minimising the kl divergence between qϕ(z | x)
and qα(z | x) with respect to α,

Eq∗(x)kl

[
qϕ(z | x) ∥ qα(z | x)

]

≜ Eq∗(x)Eqϕ(z | x)

[
log

qϕ(z | x)
qα(z | x)

]
,

= Eq∗(x)Eqϕ(z | x)

[
log

qϕ(z | x)
p∗(z)rα(z; x)

]
,

= −Eq∗(x)Eqϕ(z | x)[log rα(z; x)] + const.

Hence, this is equivalent to maximising

Eq∗(x)Eqϕ(z | x)[log rα(z; x)].

Now, for the conditional qα(z | x) to be a probability density function,
its integral must sum to one,

∫
qα(z | x)q∗(x)dxdz = 1.

Rewriting this integral, we have the constraint
∫

qα(z | x)q∗(x)dxdz =
∫

rα(z; x)p∗(z)q∗(x)dxdz

= Eq∗(x)p∗(z)[rα(z; x)] = 1.

93
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Table 4.B.1: Relevant latent and observed space f -divergences instantiated
for particular settings of f .

Reverse kl gan

f (u) u log u u log u− (u + 1) log(u + 1)

Latent Eq∗ (x)D f
[
p∗(z) ∥ qϕ(z | x)

]
Eq∗ (x)kl

[
qϕ(z | x) ∥ p∗(z)

]
2 ·Eq∗ (x)Djs

[
p∗(z) ∥ qϕ(z | x)

]
− log 4

Observed Ep∗ (z)D f [q
∗(x) ∥ pθ(x | z)] Ep∗ (z)kl [pθ(x | z) ∥ q∗(x)] 2 ·Ep∗ (z)Djs [q∗(x) ∥ pθ(x | z)]− log 4

Combined, we have the following constrained optimisation problem,

max
α

Eq∗(x)Eqϕ(z | x)[log rα(z; x)]

subject to Eq∗(x)p∗(z)[rα(z; x)− 1] = 0.

Through the method of Lagrange multipliers, this can be cast as an
unconstrained optimisation problem with objective,

Llatent
kliep

(α |ϕ) ≜ Eq∗(x)Eqϕ(z | x)[log rα(z; x)]

− λEq∗(x)p∗(z)[rα(z; x)− 1],

where λ is the Lagrange multiplier. For λ = 1, Llatent
kliep

(α |ϕ) trivially
reduces to Llatent

kl
(α |ϕ).

4.b summary of definitions

In this section, we summarise the definitions of the losses defined in
the proposed vi framework of Sections 4.3 and 4.4, and underscore
the relationships to their respective counterparts in the cyclegan

framework of Section 4.5.
Table 4.B.1 summarises the settings of convex function f : R+ → R

that recover the reverse kl divergence terms within the elbo and
aplbo, and the js divergence (up to constants) that gans are known to
minimise.

Table 4.B.2 gives the calculations of the terms necessary to explicitly
write down instances of the generalised variational lower bound for
particular convex functions f – namely the convex dual f ⋆, the first
derivative f ′ and the composition f ⋆ ◦ f ′.

Table 4.B.3 gives instances of the variational lower bound that ap-
proximate the latent and observed space kl divergences within the
elbo and aplbo, respectively. Additionally, it gives generalised stochas-
tic formulations of the gan objectives in the cyclegan framework,
while Table 4.B.4 lists their deterministic counterpart.

Lastly, Table 4.B.5 gives forward and reverse cycle-consistency con-
straints in the cyclegan framework, and the specific class of Gaussian
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Table 4.B.2: Calculations for convex functions.

Reverse kl gan

f (u) u log u u log u− (u + 1) log(u + 1)

f ⋆(t) exp(t− 1) − log(1− exp t)

f ′(u) 1 + log u log σ(log u)

f ⋆( f ′(u)) u − log(1− σ(log u))

Table 4.B.3: Instances of variational lower bounds on the relevant latent and
observed space f -divergences.

Reverse kl gan

f (u) u log u u log u− (u + 1) log(u + 1)

Latent

Llatent
f (α |ϕ) ≜ Eq∗ (x)qϕ (z | x) [ f ′(rα(z; x))]

−Eq∗ (x)p∗ (z) [ f ⋆( f ′(rα(z; x)))]

Llatent
kl

(α |ϕ) ≜ Eq∗ (x)qϕ (z | x) [log rα(z; x)]

−Eq∗ (x)p∗ (z) [rα(z; x)− 1]

Lreverse
gan

(α |ϕ) ≜ Eq∗ (x)qϕ (z | x) [log σ(log rα(z; x))]

+ Eq∗ (x)p∗ (z) [log(1− σ(log rα(z; x)))]

Observed

Lobserved
f (β | θ) ≜ Ep∗ (z)pθ(x | z) [ f ′(rβ(x; z))]

−Ep∗ (z)q∗ (x) [ f ⋆( f ′(rβ(x; z)))]

Lobserved
kl

(β | θ) ≜ Ep∗ (z)pθ(x | z) [log rβ(x; z)]

−Ep∗ (z)q∗ (x) [rβ(x; z)− 1]

Lforward
gan

(β | θ) ≜ Ep∗ (z)pθ(x | z) [log σ(log rβ(x; z))]

+ Ep∗ (z)q∗ (x) [log(1− σ(log rβ(x; z)))]

likelihoods and posteriors that instantiates these constraints (in the
limit).
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Table 4.B.4: General stochastic gan objectives and their deterministic coun-
terparts.

Stochastic Deterministic

reverse

Lreverse
gan

(α |ϕ) ≜ Eq∗ (x)p∗ (z) [logDα(z; x)]

+ Eq∗ (x)p(ϵ) [log(1−Dα(Gϕ(ϵ; x); x))]

ℓreverse
gan

(α |ϕ) ≜ Ep∗ (z) [log Dα(z)]

+ Eq∗ (x) [log(1−Dα(mϕ(x)))]

forward

Lforward
gan

(β | θ) ≜ Ep∗ (z)q∗ (x) [logDβ(x; z)]

+ Ep∗ (z)p(ξ) [log(1−Dβ(Fθ(ξ; z); z))]

ℓforward
gan

(β | θ) ≜ Eq∗ (x) [log Dβ(x)]

+ Ep∗ (z) [log(1−Dβ(µθ(z)))]

Table 4.B.5: Negative expected log conditionals and the cycle-consistency
constraints.

Gaussian Degenerate

pθ(x | z) qϕ(z | x) pθ(x | z) qϕ(z | x)

N (x | µθ(z), τ−1I) N (z |mϕ(x), t−1I) δ(x− µθ(z)) δ(z−mϕ(x))

Lnell(θ, ϕ) ≜
τ

2
Eq∗ (x)p(ϵ) [∥x− µθ(mϕ(x) + t−

1
2 ϵ)∥2

2 ] +
D
2

log
2π

τ
ℓreverse

const
(θ, ϕ) ≜ Eq∗ (x) [∥x− µθ(mϕ(x))∥2

2 ]

Lnelp(θ, ϕ) ≜
t
2

Ep∗ (z)p(ξ) [∥z−mϕ(µθ(z) + τ
− 1

2 ξ)∥2
2 ] +

K
2

log
2π

t
ℓforward

const
(θ, ϕ) ≜ Ep∗ (z) [∥z−mϕ(µθ(z))∥2

2 ]


