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3.1 introduction

Gaussian processes (gps) provide a versatile and robust framework for
modelling unknown functions, offering data efficiency, flexible encod-
ing of prior beliefs, and reliable uncertainty estimation. Their broad
application in sequential decision-making makes them invaluable in
diverse fields of ml and optimisation.

In spite of their many advantages, gps are often compared un-
favourably to deep nns for their poor scalability to large datasets, and
their inability to capture rich hierarchies of abstract representations [28,
192, 288]. While gps are the infinite-width limit of nns and therefore, in
theory, have infinitely more basis functions [185], these basis functions
are static and fully determined by the covariance function [156]. This
makes it difficult for gps to flexibly adapt to complex and structured
data from which it is beneficial for the basis functions to learn and
encode useful representations.

Considerable research effort has been devoted to sparse approxima-
tions for gps [46, 204, 226, 234]. Not least of these is sparse variational
gps (svgps) [98, 99, 262], which we examined in Section 2.4. Such
advances have not only improved the scalability of gps, but also un-
locked more flexibility in model specification. In particular, the use
of inter-domain inducing variables in svgp [140] effectively equips the
gp approximation with data-dependent basis functions. Recent works
have exploited this to construct a new family of svgp models in which
the basis functions correspond to activations of a feed-forward nn [66,
252]. By stacking multiple layers to form a dgp [49], the propagation
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of the predictive distribution accurately resembles a forward-pass
through a deep nn.

In this chapter, we show that while this approach results in a poste-
rior predictive with a more expressive mean, the variance estimate is
typically less accurate and tends to be over-dispersed. Additionally,
we examine some practical challenges associated with this method,
such as limitations on the use of certain popular kernel and nn ac-
tivation choices. To address these issues, we propose an extension
that aims to mitigate these limitations. Specifically, when viewed from
the function-space perspective, the posterior predictive of svgp de-
pends on a single set of basis functions that is determined by only a
finite collection of inducing variables. Recent advances introduce an
orthogonal set of basis functions as a means of capturing additional
variations remaining from the standard basis [36, 223, 230]. We extend
this framework by introducing inter-domain variables to construct
more flexible data-dependent basis functions for both the standard
and orthogonal components. In particular, we show that incorporating
nn activation inducing functions under this framework is an effective
way to ameliorate the aforementioned shortcomings. Our experiments
on numerous benchmark datasets demonstrate that this extension
leads to improvements in predictive performance against comparable
alternatives.

3.2 inter-domain inducing features

Recall from Equation (2.24) that the test predictive density at unseen
points f∗ ≜ f (X∗) is

q(f∗) = N (f∗ |Q∗umu, K∗∗ −Q∗u(Kuu − Cu)Qu∗) , (3.1)

where parameters mu and Cu are free parameters. In the rkhs associ-
ated with k, this predictive density has a dual representation in which
the mean and covariance share the same basis determined by u [36,
223]. More specifically, the basis function is effectively the vector-
valued function ku : X → RM whose m-th component is defined
as

[ku(x)]m ≜ Cov ( f (x), um) . (3.2)

In the standard definition of inducing points as presented in Sec-
tion 2.4.2,

[ku(x)]m = k(zm, x),

therefore, the basis function is solely determined by the covariance
function k and the local influence of pseudo-input zm.

Inter-domain inducing features are a generalisation of standard in-inter-domain
inducing features ducing variables in which each variable um is defined through the

transformation of f (·) by

um ≜ Lm[ f ].
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for some linear operator Lm : RX → R. A particularly useful operator
is the integral transform,

Lm[ f ] ≜
∫

X
f (x)ϕm(x)dx,

which was originally employed by Lázaro-Gredilla and Figueiras-
Vidal [140]. Refer to the manuscript of Wilk et al. [283] for a more
thorough and contemporary treatment. A closely related form is the
scalar projection of f onto some ϕm in the rkhs H of k,

Lm[ f ] ≜ ⟨ f , ϕm⟩H, (3.3)

which leads to
[ku(x)]m = ϕm(x)

by the reproducing property of the rkhs. This, in effect, equips the reproducing property

gp approximation with adaptive basis functions ϕm that are not solely
determined by a fixed kernel, and suitable choices can lead to sparser
representations and considerable computational benefits [25, 65, 97,
253].

3.2.1 Spherical Harmonics Inducing Features

An instance of inter-domain features in the form of Equation (3.3)
are the variational Fourier features (vffs) [97], in which ϕm form an
orthogonal basis of trigonometric functions. This formulation offers
significant computational advantages but scales poorly beyond a small
handful of dimensions. To address this, Dutordoir, Durrande, and
Hensman [65] propose a generalisation of vffs using the spherical har-
monics for ϕm, which can be viewed as a multi-dimensional extension spherical harmonics

of the Fourier basis.

(a) Zonal: Y4,0 (b) Tesseral: Y8,3 (c) Sectorial: Y3,3

Figure 3.1: A visual representation of three different surface harmonics of the
first kind. This set of examples originates from the monograph of
Efthimiou and Frye [67].

The construction relies on the Mercer’s decomposition of zonal Mercer’s
decompositionkernels, which can be seen as the analog of stationary kernels in
zonal kernelsEuclidean spaces, but for hyperspheres. They can be expressed as
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k(x, x′) = κ
(
x̃⊤x̃′

)
for some shape function κ : [−1, 1] → R, where

η̃ ≜ η
∥η∥ ∈ Sd−1 for any η ∈ Rd . Loosely speaking, just as stationary

kernels are determined by the distance between inputs, zonal kernels
depend only on the angle between inputs.

The spherical harmonics form an orthonormal basis on L2(Sd−1)

consisting of the eigenfunctions of the kernel operator K,

KYℓ,j = aℓYℓ,j,

where Yℓ,j is the spherical harmonic of level ℓ and order j, and aℓ is
the corresponding eigenvalue, or, Fourier coefficient.

A visualisation is shown in Figure 3.1. The spherical harmonics
are tricky to visualise not only in higher dimensions, but even in
three dimensions, because they are, in general, complex-valued. Here
we show, in three dimensions, several surface harmonics of the first
kind, which correspond to the real or imaginary parts of the spherical
harmonics, depending on the value of j. The surface harmonics can be
further divided into the categories of zonal which are of the form Yℓ,0,
tesseral Yℓ,j for j ̸= 0, and sectorial Yℓ,ℓ. Each of the surface harmonics
shown here is a representative example of its respective category.

Conveniently, by the Funk-Hecke theorem, the Fourier coefficient aℓ
amounts to the one-dimensional integral

aℓ =
Ωd

C(α)
ℓ (1)

∫ 1

−1
κ(t)C(α)

ℓ (t)(1− t2)
d−3

2 dt,

where C(α)
ℓ is the Gegenbauer polynomial of degree ℓ and α ≜ (d−1)/2.

Now, the number J(d, ℓ) of spherical harmonics that exist at a given
level ℓ is determined by the multiplicity of eigenvalue aℓ.

Thus, κ(t) can be represented by

κ(t) = ∥ξ∥∥ξ′∥
∞

∑
ℓ=0

J(d,ℓ)

∑
j=1

aℓYℓ,j(ξ̃)Yℓ,j(ξ̃
′
), (3.4)

where t ≜ ξ̃
⊤

ξ̃
′ for ξ, ξ′ ∈ Rd. We refer the reader to the manuscript of

Dutordoir et al. [66, Appendix B] for a concise summary of spherical
harmonics in multiple dimensions.

Importantly, Equation (3.4) directly yields a Mercer decomposition
for zonal kernels. In particular, let λℓ denote the Fourier coefficients
associated with kernel k. This gives rise to the inter-domain features
ϕm ≜ Yℓ,j, where m indexes the pairs (ℓ, j). Crucially, because the
spherical harmonics constitute an orthogonal system, this leads to a
diagonal covariance

[Kuu]mm′ ≜ Cov (um, um′) = λ−1
m δmm′ ,

where λm ≜ λℓ and δ denotes the Kronecker delta.
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3.2.2 Spherical Neural Network Inducing Features

The recent works of Dutordoir et al. [66] and Sun, Shi, and Grosse
[252] aim to construct inter-domain features ϕm such that ku(x) in
Equation (3.2) corresponds to a hidden layer in a feed-forward nn:
σ(βx), for some β ∈ RM×d and activation σ such as the softplus or
the rectified linear unit (relu) function.

x1
x2

zm

(a) An example relu-activated hidden
unit Hm : X → R visualised on the
unit sphere in 3D and projected onto
a plane.

x1

x2

xd

ϕM

ϕ4

ϕ3

ϕ2

ϕ1

z1,1z1,1

z1,2z1,2

z1,dz1,d

...

...

(b) Architectural diagram of the basis
functions ku(x), which corresponds
to the hidden layer of a feedforward
nn when each ϕm ≜ Hm represents a
hidden unit.

Figure 3.2: Basis functions ku : X → RM as hidden layers of a feedforward
nn.

In particular, let Hm : X → R denote the output of the m-th hidden
unit. Additionally, let us project this function onto the unit hyper-
sphere,

Hm(x) ≜ ∥zm∥∥x∥ · σ
(

z⊤mx
∥zm∥∥x∥

)
. (3.5)

See Figure 3.2 for a visualisation of this function. Now, since this
function is itself zonal, it can be represented in terms of the spherical
harmonics as in Equation (3.4). Let ςℓ denote its associated Fourier
coefficient. Thus, the inter-domain features can be defined as ϕm ≜ Hm,
which leads to the covariance

[Kuu]mm′ =
∞

∑
ℓ=0:
λℓ ̸=0

ς2
ℓ

λℓ

ℓ+ α

α
C(α)
ℓ

(
z⊤mzm′

∥zm∥∥zm′∥

)
, (3.6)

where λℓ denotes the Fourier coefficients associated with kernel k.
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We refer to this construction as the activated svgp. Notably, the
posterior predictive mean of the activated svgp is equivalent to the
output of a single-layer feedforward nn, as illustrated in Figure 3.3.
Through this perspective, one can reason by analogy that the pos-
terior predictive variance serves as a measure of uncertainty in the
predictions of the nn. The activated svgp has been shown to produce
competitive results, especially when multiple layers are composed to
form a dgp [49]. In this configuration, the propagation of the predictive
means closely emulates a forward-pass through a deep nn.

x1
x2

(a) The predictive mean of an activated

svgp model with relu activation fea-
tures, visualised on the unit sphere in
3D and projected onto a plane.

x1

x2

xd

...

ϕ1

ϕ2

ϕ3

ϕ4

ϕM

...

µ1

µT

...

(b) Architectural diagram of the predic-
tive means of a (multi-output) acti-
vated svgp model.

Figure 3.3: The predictive mean of an activated svgp model corresponds to
a single-layer feedforward nn.

Despite these favorable properties, activated svgps have several lim-
itations when it comes to their use with common covariance functions.
Before elaborating on them in Section 5.3, we discuss the orthogonally-
decoupled gp framework on which our proposed extension relies.

3.3 orthogonally decoupled inducing points

Recent work has improved the efficiency of sparse gp methods through
the structured decoupling of inducing variables [36, 223, 230]. This
not only enables the use of more variables at a reduced computational
expense but also allows for more flexibility in modelling the predictive
mean and covariance independently. We focus on the general frame-
work of Shi, Titsias, and Mnih [230] under which its predecessors can
be subsumed.
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In particular, let the random function f (x) from Equation (2.14) be
decomposed into the sum of two independent gps,

f (x) = g(x) + h(x),

where

g(x) ∼ GP(0, k⊤u (x)K
−1
uu ku(x′)), h(x) ∼ GP(0, s(x, x′))

and let the covariance function s(x, x′) be defined according to the
Schur complement of Kuu,

s(x, x′) ≜ k(x, x′)− k⊤u (x)K
−1
uu ku(x′),

where ku is defined in Equation (3.2). Intuitively, one can view g as
the projection of f onto u, and h ⊥ g, i. e. h is orthogonal to g [97]
in the statistical sense of linear independence [214]. See Figure 3.4
for an illustration of the priors of g(x) and h(x) and a geometric
interpretation in terms of vector subspaces.
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ku(x)>K−1
uu ku(x) k(x,x)−ku(x)>K−1

uu ku(x)

(a) Prior variance decomposed. The prior vari-
ance of f (x) is k(x, x) = α for kernel ampli-
tude α = 1, which can be decomposed as
the sum of the prior variances of g(x) and
h(x). Vertical dashed lines indicate the loca-
tion of inducing inputs zm for m = 1, . . . , 4.
At these locations, the variance of g(x) is
one while that of h(x) is zero.

Π

h

g

f

(b) Orthogonal decomposition of
function f wrt the hyperplane
Π ≜ {α⊤ku(·); α ∈ RM}; func-
tion g is the orthogonal projection
of f onto Π and function h is the
residual component perpendicu-
lar to Π.

Figure 3.4: Function f (x) decomposed as the sum of two independent gps.

Let h be the values of h at observed inputs X, i. e. h ≜ h(X). Then
we have

p(h) = N (h | 0, Sff),

where Sff ≜ Kff −Qff. This allows one to reparameterise f ∼ p(f | u)
from Equation (2.22), for a given u, as

f = Qfuu + h, h ∼ p(h). (3.7)

The model’s joint distribution can now be written as

p(y, h, u) = p(y | h, u)p(h)p(u),

where the likelihood is now

p(y | h, u) = N (y |Qfuu + h, β−1I).
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W X Z

f (·) v f u

h(·) v′ h -

Table 3.1: Summary of notation: relationships between input locations and
output variables.

Next, orthogonal inducing variables v, which represent the values of
f at a collection of K orthogonal inducing locations W ≜ [w1 · · ·wK]

⊤,
are introduced. Similarly, inducing variables v′ represent the values
of h at W. The reader may find it helpful to refer to Table 3.1 for a
summary of the relationships between the input locations and the
output variables defined thus far.

Now, by definition, v is linearly dependent on v′

v = Qvuu + v′, (3.8)

where Qvu ≜ KvuK−1
uu , which is analogous to the relationship between

f and h in Equation (3.7). Therefore, one need only be concerned with
the treatment of v′. The joint distribution of the model augmented by
the variables v′ now becomes

p(y, h, u, v′) = p(y | h, u)p(u)p(h, v′),

where p(h, v′) = p(h | v′)p(v′) for p(v′) = N (0, Svv) and p(h | v′) =
N (h | SfvS−1

vv v′, Sff − SfvS−1
vv Svf), with

Svf ≜ Kvf −Qvf, Qvf ≜ QvuKuuQuf, (3.9)

Svv ≜ Kvv −Qvv, Qvv ≜ QvuKuuQuv. (3.10)

Let the variational distribution now be q(h, u, v′) = p(h | v′)q(u, v′),
where q(u, v′) ≜ q(u)q(v′) and q(v′) ≜ N (mv, Cv) for variational
parameters mv ∈ RK and Cv ∈ RK×K s. t. Cv ⪰ 0. This gives the test
predictive density q(f∗) = N (µ∗, Σ∗∗), where

µ∗ ≜ Q∗umu + S∗vS−1
vv mv, (3.11)

Σ∗∗ ≜ K∗∗ + Q∗u(Cu −Kuu)Qu∗

+ S∗vS−1
vv (Cv − Svv)S−1

vv Sv∗.
(3.12)

Thus seen, prediction incurs a cost of O(M3 + K3) in this framework.
Like the so-called odvgp framework of Salimbeni et al. [223], when

seen from the dual rkhs perspective, the predictive mean can be
decomposed into a component that shares the same standard basis as
the covariance, in addition to another component that is orthogonal to
the standard basis. However, this framework extends odvgp further by
also decomposing the predictive covariance into parts corresponding
to the standard and orthogonal bases. Accordingly, setting Cv = Svv

recovers the odvgp framework, and further setting mv = 0 recovers
the standard svgp framework.
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covariance structure . Now, unlike q(u, v′), which factorizes
according to the mean-field assumption, q(u, v) has a full covariance
structure by virtue of the relationship described in Equation (3.8).
Specifically, we have q(u, v) = N (muv, Cuv), where

muv ≜

[
mu

Qvumu + mv

]
,

and

Cuv ≜

[
Cu CuQuv

QvuCu Cv + QvuCuQuv

]
.

3.4 methodology

We begin this section by outlining some of the limitations of activated

svgps that preclude the use of numerous kernels and inducing features,
not the least of which being popular choices of kernels such as the se

kernel and the Matérn family of kernels, combined with nn inducing
features with relu activations.

The root cause of these issues can be seen in Figure 3.5, where the
Fourier coefficients of various combinations of kernels and activation
features are visualized. Specifically, for each combination, we compare
the (root of the) kernel coefficients

√
λℓ against the feature coefficients

ςℓ at increasing levels ℓ = 1, . . . , 35. The posterior predictives that
result from fitting activated svgp models with these combinations
are shown in Figure 3.6. We consider the Matérn-5/2 kernel as our
running example, but the analysis extends to all stationary kernels.

spectra mismatch . For the Matérn kernel (left column of panes
in Figures 3.5 and 3.6), we see that there are multiple levels ℓ at
which the feature coefficients are zero while the corresponding kernel
coefficients are nonzero. Such discrepancies in the spectra yields a
poor Nyström approximation Qff that fails to fully capture the prior
covariance Kff induced by the kernel, which subsequently leads to the
overestimation of the predictive variance and therefore a suboptimal
elbo. In contrast, the Arccos kernel does not suffer from this pathology.

rkhs inner product. The rkhs inner product associated with
zonal kernels in general is a series consisting of ratios of Fourier
coefficients. Since the relu feature coefficients (top row of panes
in Figures 3.5 and 3.6) decay at the same rate as the square root of
the kernel coefficients, this results in a divergent series which in turn
renders the rkhs inner product indeterminate. In contrast, the feature
coefficients of the comparatively smoother softplus activation (bottom
row of panes in Figures 3.5 and 3.6) decay at a much faster rate, and
thus yields a well-defined rkhs inner product. For the reasons outlined
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Figure 3.5: Comparison of the Fourier coefficients of various kernels and
activation features for increasing levels ℓ = 1, . . . , 35.

above, the work of Dutordoir et al. [66] restricted its scope to the use
of the Arccos kernel in conjunction with the softplus activation (pane
highlighted in gray in Figure 3.5).

truncation error . Lastly, as expected, the truncation of the
series in Equation (3.6) at some finite number L of spherical harmonic
levels often leads to overly smooth predictive response surfaces and
overestimation of the variance.

Spherical Features for Orthogonally-Decoupled GPs

We propose extending the orthogonally-decoupled gp framework
(Section 3.3) to use inter-domain inducing features. Accordingly, let
um ≜ ⟨ f , ϕm⟩H and vk ≜ ⟨ f , ψk⟩H for some arbitrary choices of ϕm, ψk ∈
H. This generalizes the framework of Shi, Titsias, and Mnih [230] since,
by the reproducing property, setting ϕm : x 7→ k(zm, x) and ψk : x 7→
k(wk, x) leads to standard inducing points, um = f (zm), vk = f (wk).
In particular, we define ϕm ≜ Hm, the m-th unit of the spherical
activation layer (Equation (3.5)) described in Section 3.2.2, and ψk(x) ≜
k(wk, x). The posterior predictive of the model described in Section 3.3,
summarized by Equations (3.11) and (3.12), is fully determined by
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Figure 3.6: Posterior predictives of activated svgp models various kernels
and activation features and L = 16 levels.

the covariances Kff, Kuf, Kvf, Kuu, Kvu and Kvv. Recall that [Kuf]mn =

[ku(xn)]m and Kuu is precisely as expressed in Equation (3.6). We have

[Kvf]kn ≜ Cov (vk, f (xn)) = k(wk, xn),

[Kvu]km ≜ Cov (vk, um) = ϕm(wk),

[Kvv]kk′ ≜ Cov (vk, vk′) = k(wk, wk′).

Note that the cross-covariance Kvu between u and v can be interpreted
as the forward-pass of the orthogonal pseudo-input wk through the nn

activation Hm. Crucially, these terms constitute the orthogonal basis
and provide additional degrees of flexibility, through free parameters
W, that can compensate for errors remaining from the original basis
– in both the predictive mean and variance. Suffice it to say, this is
not the only possible choice but is one that possesses a number of
appealing properties.

As discussed in Section 3.3, the addition of K inducing variables
incurs a cost of O(M3 + K3). More precisely: suppose the exact cost
is C · (M3 + K3) operations for some constant C wrt M, K. Further,
suppose K = B ·M for some B > 0. Then there are a total of (B+ 1) ·M
inducing variables (orthogonal or otherwise) and the cost becomes
(B3 + 1)C · M3. By comparison, incorporating the same number of
inducing variables in svgp costs (B + 1)3C ·M3. That is, this approach
leads to a (B3 + 1)-fold increase in the constant rather than a (B + 1)3-
fold increase. Concretely, this means that doubling the number of
inducing variables doubles the constant in this approach, but leads
to an eight-fold increase in svgp. While such a difference vanishes
asymptotically for large M and K, it still has a considerable impact for
modest sizes (M, K < 1, 000) that are feasible in practice. Thus seen,
incorporating an orthogonal basis spanned by K inducing variables
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is a more cost-effective strategy for improving activated svgp than
increasing M or the truncation level L.

3.5 related work

Efforts to establish the connection between gps and nns have been
ongoing for decades. Notably, as first identified by Neal [185], the
behavior of a single-layer nn converges to that of a gp as its width
grows to infinity. This phenomenon extends to various activations
[156, 284], not least the relu activation [38], which pervades mod-
ern deep learning. It also applies in the reverse direction, i. e., one
can derive new nn activations from a given gp prior [171]. More re-
cently, several works have identified similar parallels between gps
and dnns [143, 166] and broadly, networks of various architectures
[293]. Despite their close relationship, finite nns consistently surpass
their gp counterparts in practice [78, 190]. Although gps have stood
out for offering precise uncertainty calibration and being amenable to
Bayesian inference without the need to resort to approximations, they
are less scalable by nature and have limited representational capacity.
This limitation stems from the fixed nature of their effective basis
functions, as we alluded to earlier in this chapter. In short, taken to
the infinite-width limit, the basis functions become unable to flexibly
adapt to the inputs [156]. Bayesian neural networks (bnns) present a
compelling middle ground, combining uncertainty estimation with
the representation learning of finite deep neural networks through
approximate Bayesian inference [18, 74, 154, 185]. Deep gps (dgps) [49]
serve as a complementary approach to dnns. By utilising gps layers
in place of weighted affine layers, dgps achieve superior uncertainty
estimation by virtue of their infinite width. Nevertheless, in practice,
dgps can be cumbersome to optimise and scale.

Inter-domain inducing features [140] provide a different approach
to defining inducing variables. Unlike traditional inducing points, in-
ducing features employ a linear transformation of the latent function,
resulting in basis functions that are not purely predetermined by the
kernel but have the flexibility to adapt according to the inputs. No-
tably, this approach can provide substantial computational gains and
the ability to specify more expressive gp approximations. For instance,
the variational Fourier features [97] effectively lead to basis functions
consisting of the Fourier basis. This design leads to a block-diagonal
structure in the covariance matrix, substantially improving compu-
tational efficiency. However, this approach fails to scale gracefully
beyond a few dimensions. The spherical harmonic features [65] can be
seen as an extension of this approach. They not only facilitates infer-
ence in higher dimensions but also results in a diagonal covariance,
slashing inference costs to a linear relationship with the number of
inducing variables. Further developments build on inducing features
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in the spherical domain to represent nns on the sphere in terms of its
spherical harmonics expansion [66, 252]. Rather than computational
gains, it provides yet another compelling middle ground between gps
and nns by tapping the benefits of both. In particular, under this frame-
work, the predictive mean emulates the forward pass of a single-layer
feedforward nn, enabling superior representation learning through
adaptive basis functions. Simultaneously, the posterior variance di-
rectly provides uncertainty estimation without the need to marginalise
layer weights. Nonetheless, as discussed in Section 3.4, this framework
has a tendency to underestimate the predictive uncertainty.

Concurrent with these developments, recent efforts have focused on
improving the flexibility and efficiency of sparse gp methods through
the structured decoupling of inducing variables. This not only allows
the use of a greater number of inducing variables with less computa-
tional demand, but also offers greater independence and flexibility in
representing the predictive means and covariances. More specifically,
when viewed from the dual rkhs perspective, the predictive mean
and variance in svgp [262] share a common set of basis functions.
Cheng and Boots [36] propose a novel parameterisation that allows
the predictive mean to employ its own distinct set of basis functions.
However, without appropriate constraints on these additional basis
functions, this model leads to a poorly-conditioned, nonconvex opti-
mization problem, making it unwieldy to train [94]. Building on this
decoupled parameterisation, Salimbeni et al. [223] propose the odvgp

framework, in which the predictive mean similarly employs a distinct
set of basis functions. Unlike the approach of Cheng and Boots, the
predictive mean maintains a dependency on the principal basis, which
is shared with the predictive covariance. Furthermore, any function
that can be represented by the additional basis in odvgp is, by design,
orthogonal to the span of the principal basis. This results in a better-
conditioned optimisation problem that is suitable for natural gradient
methods, and substantially enhances the model’s flexibility by virtue
of its ability to capture remaining variations that the principal basis
fails to account for. More recently, Shi, Titsias, and Mnih [230] derive
a more general framework from a probabilistic modelling perspective
by augmenting the svgp model with additional inducing variables.
This leads to a predictive density that not only encompasses that of
the odvgp as a special case, but also allows for a more flexible cali-
bration of the predictive uncertainty. It achieves this by allowing the
predictive covariance to be decoupled into the principal and orthogonal
bases, enabling more precise tuning of uncertainty estimates. Overall,
this not only makes more efficient use of inducing variables but also
enhances predictive accuracy and uncertainty estimation.
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3.6 experiments

We describe the experiments conducted to empirically validate our
approach. The open-source implementation of our method can be
found on GitHub at: ltiao/spherical-orthogonal-gaussian-processes. Fur-
ther information concerning the experimental set-up and various
implementation details can be found in Section 3.A.

3.6.1 Synthetic 1D Dataset

We highlight some notable properties of our method on the one-
dimensional dataset of Snelson and Ghahramani [235].

First we fit activated svgp models with different combinations of
kernels and activation features using L = 8 truncation levels. The
resulting posterior predictives are shown in Figure 3.7. More specifi-
cally, in Figure 3.7a, we see that none of the model fits are particularly
tight due in part to truncation errors, since we are using relatively
few levels. This is especially true of the Matérn kernel (left column of
panes), which results in a posterior that is not only too smooth but
also clearly suffering from an overestimation of the variance. A con-
ceptually straightforward way to improve performance is to increase
the truncation level. Accordingly, Figure 3.6 (introduced earlier in
Section 5.3) showed results from effectively the exact same set-up, but
with twice the number of levels (L = 16). With this increase, we see
a clear improvement in the Arccos-softplus case, but no discernible
difference in the other combinations. Notably, the overestimation of
the variances in the Matérn kernel persists. By comparison, Figure 3.7b
shows results from using L = 8 truncation levels, but with the addition
of K = 8 orthogonal inducing variables. Remarkably, incorporating
just a handful of these variables produces substantial improvements,
not least for the Matérn kernel.

Figure 3.8 offers a deeper insight into the underlying mechanisms
that contribute to these improvements. Here we plot the predictive
variance (Equation (3.12)) in terms of its constituent parts. In Fig-
ure 3.8a, we see that the variance estimate with Matérn kernels is
heavily distorted by large spurious contributions in the Kff −Qff term
(dark blue solid line), which is caused by the pathology described in
Section 5.3. On the other hand, in Figure 3.8b, such spurious contri-
butions also appear, but are offset by the subtractive term SfvS−1

vv Svf
(dark orange dashed line). This term constitutes the orthogonal basis,
and provides added flexibility that is effective at nullifying errors
introduced by the original basis.

Each of the three variations discussed above are repeated 5 times,
and some quantitative results are summarized in Figure 3.9. Specifi-
cally, we report the elbo and the throughput, i. e. the average number
of optimisation iterations completed per second. The activated svgp

https://github.com/ltiao/spherical-orthogonal-gaussian-processes
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with L = 8 truncation levels, as seen in Figures 3.7a and 3.8a, is repre-
sented by the blue circular markers. The model resulting from doubling
the number of levels L = 16, as seen in Figure 3.6, is represented by
the orange circular markers. As discussed, this leads to an improvement
in the Arccos-softplus case, but to modest or no improvements oth-
erwise. However, we can now see that this has come at a significant
computational expense, as the throughput has reduced by roughly
half. On the other hand, the model resulting from retaining the same
truncation level but incorporate an orthogonal basis consisting of
K = 8 variables, as seen in Figures 3.7b and 3.8b, is represnted by the
blue cross markers. This can be seen to have roughly the same footprint
as doubling the truncation level, but leads to a considerably improved
model fit, especially in cases involving the Matérn kernel (the only ex-
ception is in the Arccos-softplus case, where doubling the truncation
level retains a slight advantage). All told, incorporating an orthogonal
basis has roughly the same cost as doubling the truncation level but
leads to significantly better performance improvements.

3.6.2 Regression on UCI Repository Datasets

We evaluate our method on a number of well-studied regression
problems from the uci repository of datasets [61]. In particular, we
consider the yacht, concrete, energy, kin8nm and power datasets.
Additional results on the larger datasets from this collection can be
found in Section 3.B.2.

We fit variations of svgp with the Arccos, Matérn, and se kernels,
and (a) standard inducing points, and inter-domain inducing fea-
tures based on (b) relu- and (c) softplus-activated inducing features.
For each of these variants, we consider three combinations of base
and orthogonal inducing variables: (i-ii) 128 and 256 base inducing
variables (and no orthogonal inducing variables), and (iii) 128 base
inducing variables with 128 orthogonal inducing variables. The acti-
vation features are truncated at L = 6 levels. Our proposed method
is represented by the combinations consisting of relu- and softplus-
activated features with orthogonal inducing variables (b-c,iii). The
remaining combinations, against which we benchmark, correspond
to the original svgp (a,i-ii) [262], solvegp (a,iii) [230], and activated

svgp (b-c,i-ii) [66].
To quantitatively assess performance, we report the test root-mean-

square error (rmse) and negative log predictive density (nlpd), shown
in Figures 3.10 and 3.11, respectively. Unless otherwise stated, for each
method and problem, we perform random sub-sampling validation
by aggregating results from 5 repetitions across 10% held-out test sets.
Within the training set, the inputs and outputs are standardized, i. e.
scaled to have zero mean and unit variance and subsequently restored
to the original scale at test time.
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We observe that, irrespective of the choice of kernel, when using
activation features, whether relu- or softplus-activated, augmenting
the model with orthogonal bases significantly improves performance,
notably even more so than doubling the number of base inducing
variables. This can readily be seen across all datasets on both the nlpd

and rmse metrics. Further, with the Arccos kernel, it outperforms its
counterparts based on standard inducing points across most datasets
(the exception being the power dataset). With the Matérn and se

kernels, it achieves results comparable to its standard inducing points
counterparts in most datasets.

3.6.3 Large-scale Regression on Airline Delays Dataset

Finally, we consider a large-scale regression dataset concerning U.S.
commercial airline delays in 2008. The task is to forecast the dura-
tion of delays in reaching the destination of a given flight, utilising
information such as the route distance, airtime, scheduled month, day
of the week, and other relevant factors, as well as characteristics of
the aircraft such as its age (number of years since deployment). The
complete dataset encompasses 5,929,413 flights, of which we randomly
select 1M observations without replacement to form a subset that is
more manageable but still considerable in scale. Results on a reduced
100K subset can be found in Section 3.B.1.

To quantitatively assess performance, we report the test rmse and
nlpd evaluated on a 1/3 held-out test set. The results are shown in the
top and bottom rows of Figure 3.12, respectively. Within the training
set, the inputs and outputs are standardized, i. e. scaled to have zero
mean and unit variance and subsequently restored to the original scale
at test time.

Given the immense volume of data at hand, we are compelled to
utilise mini-batch training for stochastic optimisation [98]. To this end,
we use the Adam optimizer [126] with its typical default settings
(learning rate 1× 10−3, β1 = 0.9, β2 = 0.999). Our batch size is set to
5,000, and we train the models for a total of 1,200 epochs.

We fit variations of svgp with the Arccos kernel and (a) standard
inducing points and (b) inter-domain inducing features based on
softplus-activated inducing features. For each of these variants, we
consider three combinations of base and orthogonal inducing vari-
ables: (i-ii) 500 and 1,000 base inducing variables (and no orthogonal
inducing variables), and (iii) 500 base inducing variables with 500

orthogonal inducing variables. The activation features are truncated at
L = 6 levels. Our proposed method is represented by the combination
consisting of softplus-activated features with orthogonal inducing
variables (b,iii). The remaining combinations, against which we bench-
mark, correspond to the mini-batch svgp (a,i-ii) [98], solvegp (a,iii)
[230], and activated svgp (b,i-ii) [66].
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The outcomes are as expected when employing standard induc-
ing points (left). In particular, doubling the number of base inducing
points from 500 to 1,000 demonstrates significant improvements. Fur-
thermore, by using 500 base inducing points alongside 500 orthogonal
inducing points, we achieve comparable performance to having 1,000

base inducing points, while enjoying improved computationally effi-
ciency. In contrast, when examinining the activated svgp model with
softplus features (right), it’s apparent that it underperforms com-
pared to the original svgp counterparts. Furthermore, doubling the
number of inducing features from 500 to 1,000 has virtually no effect.
However, by incorporating orthogonal bases into the activated svgp

model with 500 features following our proposed approach, we witness
substantial improvements and achieve comparable performance to its
standard inducing points counterparts.

3.7 summary

We considered the use of inter-domain inducing features in the orthogonally-
decoupled svgp framework, specifically, the spherical activation fea-
tures, and showed that this alleviates some of the practical issues
and shortcomings associated with the activated svgp model. We
demonstrated the effectiveness of this approach by conducting em-
pirical evaluations on several problems, and showed that this leads
to enhanced predictive performance over more computationally de-
manding alternatives such as increasing the truncation levels or the
number of inducing variables.

Future work will explore alternative designs of inter-domain in-
ducing features to construct new standard and orthogonal bases that
provide additional complementary benefits.
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(a) Inducing activation features with L = 8 levels.
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(b) Inducing activation features with L = 8 levels and K = 8 orthogonal
bases (our method).

Figure 3.7: Posterior predictives of activated svgp with various kernels
and activation features on the 1D Snelson dataset; black circular
markers represent the observations; blue solid lines and shaded
regions denote the mean and the ±2 standard deviations, resp.
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(a) Inducing activation features with L = 8 levels.
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(b) Inducing activation features with L = 8 levels and K = 8 orthogonal
bases (our method).

Figure 3.8: Decomposition of the posterior predictive variances of svgp with
various kernels and activation features on the 1D snelson dataset
(see Figure 3.7) into its constituent terms; the additive terms
that constitute the predictive variance are indicated by solid
lines, while the subtractive terms are indicated by dashed lines;
terms that constitute the predictive variance of the original svgp

model [262] have a blue hue, while additional terms introduced
by the orthogonally-decoupled model [230] have an orange hue.



66 orthogonally-decoupled gps with nn activation features

−200

−150

E
L

B
O

Matérn-5/2

R
E

L
U

features

Arccos

40 60 80
throughput (iter/sec)

−200

−150
E

L
B

O

40 60 80
throughput (iter/sec)

S
O

F
T

P
L

U
S

features

number of levels
8
16

M inducing variables, K orthogonal inducing variables
M = 32,K = 0
M = 32,K = 8

Figure 3.9: The elbo and throughput (of model fitting) for various kernels
and activation features and the configurations visualized in Fig-
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with low opacity represent the individual runs, while markers
with high opacity represent the mean of each group.
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Figure 3.10: Test rmse on regression problems from the uci repository of
datasets for various kernels and activation features. Along the
rows labeled “inducing points”, the red and blue markers (♦,♦)
represent the original svgp model [262], while the green markers
(♦) represent solvegp [230]. Along the remaining rows, the red
and blue markers (♦,♦) represent the activated svgp [66], while
the green markers (♦) represent our proposed approach.
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Figure 3.11: Test nlpd on regression problems from the uci repository of
datasets for various kernels and activation features. Along the
rows labeled “inducing points”, the red and blue markers (♦,♦)
represent the original svgp model [262], while the green markers
(♦) represent solvegp [230]. Along the remaining rows, the red
and blue markers (♦,♦) represent the activated svgp [66], while
the green markers (♦) represent our proposed approach.
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Figure 3.12: Test metrics, rmse and nlpd, on the large-scale 2008 U.S. airline
delays dataset using the Arccos kernel with standard inducing
points and softplus-activated features. Along the column la-
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solvegp [230]. Along the column labeled “softplus features”,
the red and blue lines (— and —) represent the activated svgp

[66], while the green line (—) represents our proposed approach.





A D D E N D U M

3.a experimental set-up and implementation details

3.a.1 Hardware

All experiments were carried out on a consumer-grade laptop com-
puter with an Intel Core™ i7-11800H (8 Cores) @ 4.6GHz Processor,
16GB Memory, and a NVIDIA GeForce RTX™ 3070 Laptop (Mobile/Max-
Q) Graphics Card.

3.a.2 Software

Our method is implemented by extending functionality from the
GPFlow software library [167]. The code will be released as open-
source software upon publication. Additional software dependencies
upon which our implementation relies, either directly or indirectly,
are enumerated in Table 3.A.1.

Table 3.A.1: Key software dependencies.

Method Software Library URL (github.com/*)

svgp [262] GPFlow GPflow/GPflow

odvgp [223] - hughsalimbeni/orth_decoupled_var_gps

solvegp [230] - thjashin/solvegp

vish [65] Spherical Harmonics vdutor/SphericalHarmonics

activated svgp [66] - vdutor/ActivatedDeepGPs

- Bayesian Benchmarks hughsalimbeni/bayesian_benchmarks

3.a.3 Hyperparameters

We adopt sensible defaults across all problems and datasets; no hand-
tuning is applied to any specific one. The choices of the hyperparame-
ters and other relevant dependencies are summarized as follows:

optimisation. We use the l-bfgs optimizer [26, 301] with the
default settings from scipy.optimize [275].

likelihood. The Gaussian likelihood variance is initialized to 1.0
across all experiments.
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https://github.com/GPflow/GPflow
https://github.com/hughsalimbeni/orth_decoupled_var_gps
https://github.com/thjashin/solvegp
https://github.com/vdutor/SphericalHarmonics
https://github.com/vdutor/ActivatedDeepGPs
https://github.com/hughsalimbeni/bayesian_benchmarks
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kernel parameter initialisation. All stationary kernels are
initialized with unit lengthscale and amplitude.

variational parameter initialisation. The variational dis-
tributions q(u), q(v′) are initialized with zero mean and identity
covariance m = 0, C = I.

whitened parameterisation. We do not use the whitened
parameterisation (as used, for example, by Hensman et al. [100] and
Murray and Adams [182]) in either q(u) or q(v′).

inducing point initialisation. We make our best effort to
ensure a fair comparison against baselines involving standard induc-
ing points. To this end, we adopt the best practice of first optimising
the variational parameters, not least the inducing input locations Z
(and W where applicable), before jointly optimising all of the free
parameters. This initialisation phase is done for up to 100 iterations of
the l-bfgs algorithm.

3.b additional results

3.b.1 Regression on Airline Delays Dataset

We repeat the experiment outlined in Section 3.6.3, focusing on a
reduced subset of the 2008 U.S. airline delays dataset that consists of
100K randomly selected observations. Unlike the previous experimen-
tal set-up, the parameters are optimised for a total of 1,000 epochs.
Additionally, we report aggregated results from 5 repetitions across
1/3 held-out test sets. The results are shown in Figure 3.B.1.

3.b.2 Extra UCI Repository Datasets

Results on a few larger regression datasets from the uci repository
can be found in Figure 3.B.2. In this analysis, we adopted the same
combination of activation features and sparse gp models as described
in Section 3.6.2. However, in contrast to Section 3.6.2, we restrict our
focus to the Arccos kernel.
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Figure 3.B.1: Test metrics, rmse and nlpd, aggregated across 5 random sub-
sampling test splits on a 100K subset of the 2008 U.S. airline
delays dataset. Results are shown for models using the Arccos
kernel with standard inducing points and various activation
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and blue lines (— and —) represent the mini-batch svgp [98],
while the green line (—) represents solvegp [230]. Along the
column labeled “softplus features”, the red and blue lines (—
and —) represent the activated svgp [66], while the green line
(—) represents our proposed approach.
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Figure 3.B.2: Test metrics, rmse and nlpd, on an extra set of larger regres-
sion problems from the uci dataset repository for the Arccos
kernel and various activation features. Along the rows labeled
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original svgp model [262], while the green markers (♦) rep-
resent solvegp [230]. Along the remaining rows, the red and
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