
2
B A C K G R O U N D

2.1 probabilistic machine learning

Probabilistic models have become pillars of modern ml. They are at
the core of powerful frameworks that can uncover hidden structures,
learn useful representations, and efficiently utilise them to make accu-
rate predictions or generate realistic samples. Through the formalism
of probability theory and Bayesian inference, probabilistic models
provide a coherent framework for systematically reasoning about the
unknown. Such a framework possesses notable advantages: it can
quantify uncertainty in predictions, naturally handle missing data,
and avoid over-fitting to spurious patterns. The probabilistic approach
to ml is deeply embedded in many of its most impactful applications
today.

In a probabilistic model, all quantities are treated as random vari-
ables – the data is treated as observed, or, known, variables, which variables, observed

are assumed to be governed by some underlying hidden, latent, or,
unknown variables. Let D be the set of observed variables and H the variables, latent

set of hidden variables, with the joint density joint density

p(D,H) = p(D |H)p(H).

Notably, the distribution of the observed variables is assumed to
be governed by the hidden variables. In particular, a prior density
p(H) is placed on the hidden variables H, reflecting the beliefs about prior

its plausible values, and to rule out absurd values that should not
be entertained. Its relationship to the observed variables D is then
defined through the likelihood function, or, simply, likelihood, p(D |H).
Note this conditional is sometimes also referred to as the observational likelihood

model. Now, the problem of inference in Bayesian models amounts to observational model

computing the posterior density p(H |D), the conditional probability posterior

of the hidden factors given the observed data. By Bayes’ theorem, Bayes’ theorem

p(H |D) = p(D |H)p(H)

p(D) . (2.1)

The posterior can be seen as a refinement of the prior beliefs in light
of observed data. In the Bayesian learning framework, the posterior
can be updated iteratively as more data or new evidence becomes
available.

To compute the conditional in Equation (2.1) exactly, one must
compute the denominator p(D), often referred to as the model evidence,
It is also known as the marginal likelihood, since it is obtained by evidence

marginal likelihood

9
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marginalising out the hidden variables from the joint density,

p(D) =
∫

p(D |H)p(H)dH. (2.2)

The posterior distribution in Equation (2.1) may be useful in and
of itself, but is most commonly used downstream in a number of
ways, e. g., for decision-making, or as the new prior as additional data
arrives, or to make predictions on unseen data D∗,posterior predictive

p(D∗ | D) =
∫

p(D∗ | H)p(H |D)dH.

Despite its conceptual simplicity, exact Bayesian inference is often
fraught with intractabilities. Specifically, computing the evidence in-
tegral in Equation (2.2) proves to be a frequent source of difficulties
for many model families. This computation can exhibit exponential
time complexity, rendering it computationally intractable. Even withintractability,

computational the advanced hardware available today, an unassuming polynomial
time complexity is still considered computationally intractable when
dealing with sufficiently large datasets. For example, as of the current
writing, algorithms with a cost of O(N3) are typically deemed pro-
hibitively slow when N is on the modest order of thousands [99, 277].
Moreover, in many cases, this integral doesn’t even have a closed-form
expression (e. g., due to non-conjugacy), rendering it analytically in-
tractable. Consequently, the accurate and efficient evaluation of theintractability,

analytical evidence integral stands as a paramount challenge when performing
Bayesian inference for the vast array of complex models that dominate
modern probabilistic ml.

When it is not feasible to carry out exact inference, one must instead
resort to approximate inference techniques. Some dominant formsapproximate

inference of approximate inference include the Laplace approximation [155],
expectation propagation (ep) [173], sampling-based approaches such
as Markov chain Monte Carlo (mcmc) [187], or optimisation-based
approaches such as vi [118, 276]. In this thesis, we shall focus on vi,
which turns out to be a common thread that weaves together a number
of seemingly disaparate research topics.

2.2 variational inference

The basic idea of variational inference (vi) is to cast inference as an
optimisation problem [17]. We first specify a family Q of densities over
the latent variables. Each member q ∈ Q is a candidate approximation
to the exact posterior p(H |D). We then optimise over this family to
find that member that minimises the Kullback–Leibler (kl) divergence
to the exact posterior,Kullback–Leibler

divergence
q∗(H) = arg min

q∈Q
kl [q(H) ∥ p(H |D)] . (2.3)
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Having found the optimal approximate density q∗(H), it can then
be used as a subtitute for the exact posterior density. However, a
difficulty remains – explicitly spelling out the kl divergence in Equa-
tion (2.3) reveals its dependence on p(D), the model evidence from
Equation (2.2),

kl [q(H) ∥ p(H |D)] ≜ Eq(H)

[
log

q(H)

p(H |D)

]
= Eq(H)

[
log

p(D)q(H)

p(D,H)

]

= log p(D) + Eq(H)

[
log

q(H)

p(D,H)

]
(2.4)

However, let’s not forget that the intractability of the evidence is the
raison d’être of approximate inference in the first place. Clearly, directly
minimising the kl is infeasible, prompting the need to consider an
alternative strategy.

2.2.1 Evidence Lower Bound

evidence lower
boundThis brings us to the well-known evidence lower bound (elbo) objec-

tive, which is defined as

elbo(q) ≜ Eq(H)

[
log

p(D,H)

q(H)

]
. (2.5)

Crucially, as the name suggests, the elbo is a lower bound on the
model evidence. In particular, adding elbo(q) to both sides of Equa-
tion (2.4), we get

log p(D) = elbo(q) + kl [q(H) ∥ p(H |D)] .

Hence, the elbo consists of the negative kl divergence and the log
marginal likelihood, which is a constant wrt q(H). Thus seen, max-
imising the elbo is equivalent to minimising the kl divergence in
Equation (2.3). Moreover, since the kl divergence is nonnegative,
kl [· ∥ ·] ≥ 0, it further follows that the elbo is a lower bound on
the log marginal likelihood, log p(D) ≥ elbo(q), for any q ∈ Q. This
bound can also be derived using Jensen’s inequality, as originally
shown by Jordan et al. [118].

We can expand the elbo as

elbo(q) = Eq(H)[log p(D |H)]− kl [q(H) ∥ p(H)] . (2.6)

The first term in Equation (2.6) is commonly referred to as the ex-
pected log-likelihood (ell), while the second term is the negative kl expected

log-likelihoodbetween the approximate posterior q(H) and prior p(H). The ell

term encourages the approximate density to place its mass on config-
urations of the latent variables that explain the observed data, while
the negative kl divergence term encourages densities that resemble
the prior. Combined, these terms constitute the elbo and reflect the
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usual balance between the likelihood and prior – and between data fit
and regularisation.

Under benign conditions, the solution q∗(H) to the optimisation
problem outlined in Equation (2.3) can be derived analytically. An
illustrative example of this is found in gps, a widely used family of
models that we shall formally introduce in Section 2.4. Specifically, in
the sparse gp regression (sgpr) framework discussed in Section 2.4.2.3,
the optimal q∗(H) has a closed-form expression. However, in most
cases, q∗(H) is obtained through a hill-climbing optimisation proce-
dure, specifically, gradient ascent, applied to an analytical form of the
elbo. This approach is employed in the more general sparse varia-
tional gp (svgp) framework, presented in Section 2.4.2.1, where the
likelihood is not (necessarily) Gaussian. If the likelihood factorises,
the use of mini-batch training for stochastic optimisation [105], as
explained in Section 2.4.2.2, allows for scaling to massive datasets.

More generally, in other scenarios, such as vi with blackbox like-
lihoods [209], discrete hidden variables [114, 158], or implicit distri-
butions [110, 267], one or more components of the elbo may lack
analytical tractability and thus necessitate further approximations.
Chapter 3 of this thesis focuses on improving inference in the svgp

framework through the use of nn basis functions, Chapter 4 examines
a new kind of vi scheme designed to handle implicit distributions,
and Appendix A explores the efficient posterior sampling of gps and
their sparse variational approximations.

For a complete resource on the foundations of vi, we refer the inter-
ested reader to the review article of Blei, Kucukelbir, and McAuliffe
[17], now a contemporary classic.

2.3 statistical divergences and density-ratio estima-
tion

Statistical divergences quantify the dissimilarity between probabil-
ity distributions and are essential in probabilistic ml. In the pre-
ceding section on variational inference, we saw a prime example of
one such divergence, namely, the well-known kl divergence. In fact,
the kl divergence is just one of many divergences that belong to a
larger family of statistical divergences known as the f -divergences [48,
146], also known as the Ali-Silvey distances [2]. For a convex, lower-f -divergence

semicontinuous function f : R+ → R satisfying f (1) = 0, the f -
divergence between two distributions with probability densities p(x)
and q(x) is defined as

D f [p(x) ∥ q(x)] ≜ Eq(x)

[
f
(

p(x)
q(x)

)]
. (2.7)
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For instance, the familiar kl divergence that appears extensively in vi

– more precisely, the reverse1
kl divergence kl [q ∥ p] – is obtained as a

special case of Equation (2.7) under the setting f : u 7→ − log u. At the
heart of Equation (2.7) is the fraction, or, ratio,

r(x) ≜
p(x)
q(x)

(2.8)

with density p(x) as the numerator and q(x) as the denominator. This
crucial quantity is referred to as the density-ratio of p(x) and q(x). The density-ratio

density-ratio is known variously in other parts of the literature as the
“likelihood ratio,” or the “importance weight”. Clearly, when either one
or both of the densities are unavailable in analytical form, either due to
intractabilities or intentional modelling choices, the f -divergence from
Equation (2.7) will also be analytically intractable. Perhaps the most
notable case of such intractabilities is in the framework of generative
adversarial networks (gans) [86], in which the underlying goal is to
minimise some f -divergence between two distributions where neither
admits a tractable density, and one must therefore rely solely on their
samples [177, 191].

More broadly, the problem of dre is concerned with approximating
density-ratios when no information is available from distributions p or
q other than their samples. The dre problem is pervasive throughout
ml and arises in a impressively diverse range of contexts, e. g., in co-
variate shift adaptation [15, 250, 268], energy-based models (ebms) [90,
92, 269], vi [110, 172], likelihood-free inference [64, 257, 267], mutual
information estimation [11], bias-correction for generative models [39,
91], and Bayesian experimental design (bed) [129, 130]. Chapter 5 of
this thesis demonstrates how dre arises in the context of bo [241, 259],
a close cousin of bed. Furthermore, as alluded to earlier, Chapter 4

discusses a novel vi approach that relies heavily on dre to deal with
implicit distributions.

The most obvious but naïve approach to tackling the dre problem
is to separately estimate the densities p(x) and q(x) using, e. g., ker-
nel density estimation (kde) [233], and then to use their ratio as an
approximation to the unknown true density-ratio. Not surprisingly,
this approach suffers from a large host of issues, most of which are
well-documented by Sugiyama, Suzuki, and Kanamori [251]. We dis-
cuss these at further length in Chapter 5, with an added emphasis on
the drawbacks that most impact applications in global optimisation.

Not surprisingly, there is a substantial body of existing works on
dre [251]. Recognising the deficiencies of the naïve kde approach,
a myriad alternatives have since been proposed, including kl im-
portance estimation procedure (kliep) [250], kernel mean matching
(kmm) [88], unconstrained least-squares importance fitting (ulsif) [122],
and relative ulsif (rulsif) [292]. In this thesis, we shall primarily focus

1 the kl divergence is asymmetric
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on cpe, introduced in Section 2.3.2, an effective and versatile approach
that has found widespread adoption in a diverse range of contexts
such as those mentioned above.

2.3.1 Variational Divergence Estimation

The problem of estimating statistical divergences and, by extension,
density-ratios, using only samples [188, 191] can be effectively tackled
by leveraging the framework of convex analysis [213]. Convex analysis
is a vast topic in its own right. For a light and intuitive introduction
to convex duality (albeit applied in a different context), the reader is
envouraged to to consult the self-contained section from the text of
Bishop [16, §10.5]. Now, every convex, lower-semicontinuous function
f has a convex dual f ⋆, also known as the Fenchel conjugate [213].convex dual

More precisely, function f and its convex dual f ⋆ are related as follows,Fenchel conjugate

f (u) = max
t
{ut− f ⋆(t)}, f ⋆(t) = max

u
{ut− f (u)}. (2.9)

The convex dual is involutory, meaning that the convex dual of f ⋆

is simply f ⋆⋆ = f . Since f is convex, its first derivative f ′ is strictly
nondecreasing. Therefore, we can reparameterise the variational for-
mulation of f (u) from Equation (2.9) by substituting t with f ′(s) (for
some s in the domain of f ′),

f (u) = max
s

{
u f ′(s)− f ⋆( f ′(s))

}
.

Substituting this into the f -divergence from Equation (2.7) and invok-
ing Jensen’s inequality gives the lower bound

D f [p(x) ∥ q(x)] ≥ max
θ

{
Ep(x)[ f ′(rθ(x))]−Eq(x)[ f ⋆( f ′(rθ(x)))]

}
,

(2.10)
where rθ : X → R+ is some mapping with parameters θ. This is a
powerful bound with far-reaching implications. Firstly, observe that
this lower bound objective does not strictly rely on the densities p(x)
and q(x) – to efficiently maximise this objective in practice, e. g., us-
ing stochastic gradients with the reparameterisation trick, we need
only be able to draw samples from p(x) and q(x). Secondly, some
straightforward calculus of variations shows that the bound is tighest
when rθ(x) = r(x), i. e., when the parameterised mapping is precisely
the density-ratio introduced in Equation (2.8). In other words, opti-
mising the objective in Equation (2.10) to obtain a tight lower bound
directly goes hand-in-hand with obtaining an accurate estimate of the
density-ratio.

2.3.2 Class-Probability Estimation

We’ve just discussed a general framework for simulatenously estimat-
ing divergences and addressing the dre problem. Let’s now consider
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a prominent special case of this known as density-ratio estimation by
class-probability estimation (cpe) [15, 37, 170, 203, 251]. Let πθ be a
probabilistic classifier: a mapping πθ : X → [0, 1] parameterised by θ.
Recall the well-known binary cross-entropy (bce) loss, also known as binary cross-entropy

the log loss, prevalent in binary classification,

L(θ) ≜ −Ep(x)[log πθ(x)]−Eq(x)[log (1− πθ(x))]. (2.11)

Interestingly, there is a lower bound on the bce loss [86] that can be
expressed in terms of an f -divergence, namely, the Jensen-Shannon
(js) divergence Djs [p ∥ q], which is a symmetrised variant of the kl Jensen-Shannon

divergencedivergence,

min
θ
L(θ) ≥ −2 (Djs [p(x) ∥ q(x)]− log 2) .

To see this, let’s first parameterise the classifier as

πθ(x) ≜ σ(log rθ(x)), (2.12)

where σ denotes the logistic sigmoid function and rθ is some function
parameterised by θ. The intermediate (pre-activation) output log rθ(x)
is known as the logits, or log-odds. In the special case of logits, log-odds

fbce(u) ≜ u log u− (u + 1) log (u + 1) (2.13)

in Equation (2.10), we get

2 (Djs [p(x) ∥ q(x)]− log 2) = D fbce
[p(x) ∥ q(x)]

≥ max
θ

{
Ep(x)[log σ(log rθ(x))] + Eq(x)[log (1− σ(log rθ(x)))]

}

= max
θ
{−L(θ)} = −min

θ
L(θ),

and negating both sides gives the desired bound. Like in Equa-
tion (2.10), the bce loss is minimised when rθ(x) = r(x), or equiva-
lently when

πθ(x) = σ(log r(x)) =
p(x)

p(x) + q(x)
,

where r(x) is the true density-ratio defined in Equation (2.8). Impor-
tantly, this provides a straightforward means of recovering a density-
ratio estimator from a probabilistic classifier

rθ(x) = exp σ−1(πθ(x)) =
πθ(x)

1− πθ(x)
,

and vice versa. Thus, we’ve obtained a direct way of casting the
problem of dre as the well-studied problem of cpe. Furthermore, this
general approach is not restricted only to the bce loss but extends
to any other proper scoring rule [85] that produce well-calibrated proper scoring rule

probabilistic predictions, such as the hinge loss [218].
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The cpe approach described here constitutes the predominant ap-
proach to dre. It’s not difficult to imagine why, considering the veri-
table cornucopia of user-friendly, off-the-shelf software frameworks
that are available for supervised learning. Notable examples include
scikit-learn [199] a versatile library covering a wide range of different
paradigms, as well as specialised libraries like XGBoost [34] for deci-
sion tree ensembles with extreme gradient-boosting (xgboost), and
PyTorch [197]/Lightning and TensorFlow [1]/Keras [40] for deep neural
networks (dnns), to name just a few. These frameworks have made it
easier than ever to train powerful classifiers, driving the widespread
adoption of the cpe approach to tackling the problem of dre.

toy 1d example . Consider the following toy example where the
densities ℓ(x) and g(x) are known and given exactly by the following
(mixture of) Gaussians,

ℓ(x) ≜ 0.3N (2, 12) + 0.7N (−3, 0.52), and g(x) ≜ N (0, 22),

as illustrated by the solid red and blue lines in Figure 2.1, respectively.
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Figure 2.1: Densities ℓ(x) and g(x) and their (kernel density) estimates.

We draw a total of N = 1, 000 samples from these distributions,
with a fraction γ = 1/4 drawn from ℓ(x) and the remainder from g(x).
These are represented by the vertical markers along the bottom of the
x-axis (a so-called “rug plot”). Then, two kdes, shown with dashed
lines, are fit on these respective sample sets, with kernel bandwidths
selected according to the “normal reference” rule-of-thumb. We see
that, for both densities, the modes are recovered well, while for ℓ(x),
the variances are overestimated in both of its mixture components. As
we shall see, this has deleterious effects on the resulting density-ratio
estimate.

In Figure 2.2a, we represent the true relative density-ratio with the red
line. Note that the relative density-ratio, as we shall see in Section 5.2.1,
is a generalisation of the ordinary density-ratio we introduced at the
beginning of this section. For the purposes of the present discussion,
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(a) The relative density-ratio, estimated with an mlp classifier.
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(b) The relative density-ratio, estimated
with a rf classifier.
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(c) The relative density-ratio, estimated
with an xgboost classifier.

Figure 2.2: Synthetic toy example with (mixtures of) Gaussians.

its precise definition is immaterial as the same analysis applies both
to relative and ordinary density-ratios. The estimate resulting from
taking the ratio of the kdes is shown in blue, while that of the cpe

method described in this section is shown in green. In this subfigure,
the probabilistic classifier consists of a simple mlp with 3 hidden
layers, each with and 32 units and elu activations. In Figures 2.2b
and 2.2c, we show the same, but with rf and xgboost classifiers.

The cpe methods appear, at least visually, to recover the exact
density ratios well, whereas the kde method does so quite poorly.
Perhaps the more important quality to focus on, particularly if used
in the context of global optimisation as in Chapter 5, is the mode of the
density-ratio functions. In the case of the kde method, we can see that
this deviates significantly from that of the true density-ratio. In this
instance, although kde fit g(x) well and recovered the modes of ℓ(x)
accurately, even a slight overestimation of the variance in the latter
led to a significant shift in the maximiser of the resulting density-ratio
functions.
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2.4 gaussian processes

We now shift gears and turn our focus to Gaussian processes (gps), a
class of nonparametric Bayesian models that provide a powerful frame-
work for reasoning about unknown functions. gps are ubiquitous in
probabilistic ml [156]. They exhibit remarkable data efficiency, achiev-
ing high accuracy even with limited data. Moreoever, they inherently
possess mechanisms that help to mitigate over-fitting, and can flexibly
encode prior beliefs and assumptions through their covariance func-
tion. Last but not least, by virtue of their ability to faithfully capture
predictive uncertainty, they form the backbone of many sequential
decision-making procedures that require reliable uncertainty estimates
to appropriately balance important trade-offs such as that of exploration
and exploitation, for instance, in active learning [108], reinforcement
learning [55], Bayesian optimisation [20, 75, 228] (covered in-depth
separately in Section 2.5), probabilistic numerics [95], and more.

2.4.1 Gaussian Process Regression

More formally, gps are a flexible class of distributions over functions. A
random function f : X → R on some domain X ⊆ RD is distributed
according to a gp if, at any finite collection of input locations X∗ ⊆ X ,
its values f∗ = f (X∗) follow a Gaussian distribution. A gp is fully
determined by its covariance function k(x, x′) and mean function,covariance function

which can be assumed without loss of generality to be constant (e. g.,
zero).

Consider a supervised learning problem in which we have a dataset
{xn, yn}N

n=1 consisting of scalar outputs yn, which are related to fn ≜
f (xn), the value of some unknown function f (·) at input xn ∈ X ,
through the likelihood p(yn | fn). A powerful modelling approach
consists of specifying a gp prior on the latent function f (·),

f (x) ∼ GP
(
0, k(x, x′)

)
. (2.14)

Let X denote the inputs, f the corresponding latent function values,
and y the outputs. In the regression setting, the outputs y are assumed
to be noisy observations of the latent values f, typically related through
a Gaussian likelihood

p(y | f, β) = N (y | f, β−1I), (2.15)

for some precision β > 0.precision

Under this likelihood, the posterior predictive density p(f∗ | y) at
test inputs is has the closed-form expression

p(f∗ | y) = N
(

K∗f(Kff + β−1I)−1y, K∗∗ −K∗f(Kff + β−1I)−1Kf∗
)

.
(2.16)
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Figure 2.3: Gaussian process (gp) posterior predictive density on the synthetic
one-dimensional snelson1d dataset [235]; three random functions
sampled from this density are indicated by the blue curves.

Clearly, evaluating this density has a time complexity of O(N3), which
stems from the costs associated with calculating the matrix inverse of
Kff + β−1I. Furthermore, for other (i. e., non-Gaussian) likelihoods the
closed-form expression for p(f∗ | y) is generally unavailable.

2.4.1.1 Covariance Functions

The covariance function holds a pivotal role in gp models, as it en-
capsulates prior beliefs and assumptions about the latent function of
interest. It provides a means to encode various characteristics such
as periodicity, roughness, and smoothness (or, to be more precise,
orders of differentiability), etc. Specifically, let us examine the family of
stationary covariance functions, which are translation invariant in the stationarity

input space. In other words, kθ(x, x′) only depends on the difference
x − x′ between the input locations x and x′. This can be expressed
mathematically as

kθ(x, x′) = κθ(x− x′),

for some function κθ, where θ consists of some collection of parameters.
The use of a stationary covariance function reflects the assumption
that the relationship between f (x) and f (x′) is fully characterised by
the difference between x and x′. In particular, consider the squared
exponential (se) kernel, or, the exponentiated quadratic kernel, which squared exponential

kernelcan be expressed in terms of function κθ of the difference t ≜ x− x′,

κθ(t) = σ2
f exp

(
− t2

2ℓ2

)
, (2.17)

where the parameters θ ≜ {ℓ, σ2
f } are made up of the characteris-

tic lengthscale ℓ and the variance, or, amplitude, σ2
f . Generalising the characteristic

lengthscale

amplitude
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(a) Profile of various covariance functions
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Figure 2.4: Several widely-used stationary covariance functions.

squared exponential (se) kernel to D dimensions, we have

κθ(t) = σ2
f exp

(
−1

2
t⊤Λ−1t

)
, (2.18)

for some nonsingular matrix Λ. The most common and arguably
useful choice for Λ is the diagonal matrix,

Λ ≜ diag(ℓ2
1, . . . , ℓ2

D),

consisting of the characteristic lengthscales ℓ1, . . . , ℓD, each associated
with an input dimension. Intuitively, each lengthscale dictates how
close the input location needs to be (along the associated dimension)
for the function values to exhibit high correlation. This effectively
implements the functionality known as automatic relevance determi-
nation (ard) [185], because the relevance of an input dimension isautomatic relevance

determination inversely proportional to the corresponding lengthscale – that is, an
input dimension with a large associated lengthscale will have virtually
no influence on the covariance, effectively disregarding its variations
during inference [286]. The se covariance function is infinitely differ-
entiable, implying that the latent function f (x) will have derivatives
of all orders. However, assuming such a degree of smoothness is often
unreasonable for many applications. For this reason, many practition-
ers appeal to the Matérn family of covariance functions [247], whichMatérn kernel

were originally named after Matérn [164]. This family of functions
offers greater flexibility in modelling various degrees of smoothness,
which can be adjusted by specifying a smoothness parameter ν.
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Figure 2.5: Gaussian process (gp) prior samples resulting from different sta-
tionary covariance functions with characteristic lengthscale ℓ =
5/4; three random samples are drawn for each covariance func-
tion.

Specifically, in the case when ν is half-integer, i. e., ν = ρ + 1/2 for
some nonnegative integer ρ, the Matérn-ν covariance function can be
expressed as

κ
(ν)
θ (t) =σ2

f exp
(
−
√

2νt⊤M−1t
) Γ(ρ + 1)

Γ(2ρ + 1)

×
ρ

∑
i=0

(ρ + i)!
i!(ρ− i)!

(√
8νt⊤M−1t

)ρ−i
.

(2.19)

There are a few properties worth noting here. First, the latent function
f (x) will have derivatives up to order ρ. This is consistent with the
fact that we obtain the se kernel in the limit as ν → ∞. The most
interesting cases are ν = 1/2, 3/2, 5/2, with the last perhaps being the
most widely-used in practice. The choice of ν = 5/2 signifies a prior
belief that the latent function f (x) is twice differentiable (since ρ = 2),
which has been advocated as a helpful assumption, e. g., in the context
of global optimisation [236].

2.4.1.2 Hyperparameter Estimation

We’ve already discussed how to obtain the posterior predictive density
at test inputs for a given set of hyperparameters, such as {θ, β} for
noise precision β and kernel parameters θ. As one can imagine from
our earlier discussions, these hyperparameters exert a large influence
on the behaviour of the gp and its predictions. However, determining
the appropriate values for these hyperparameters is often challenging
and impractical to do manually. In most cases, when the ideal fully-
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Figure 2.6: Gaussian process (gp) prior samples resulting from different sta-
tionary covariance functions with varying lengthscales; one sam-
ple is drawn for each combination.

Bayesian treatment of these hyperparemeters proves too unwieldy,
it is common practice to adopt a configuration that maximises the
marginal likelihood, known as type-ii maximum likelihood estimation
(mle). In the regression setting we have been discussing, the marginal
likelihood has the closed-form expression

log p(y | θ, β) = log
∫

p(y | f, β)p(f | θ)df = logN (y | 0, Kff + β−1I)

= −1
2

y⊤(Kff + β−1I)−1y− 1
2

log|Kff + β−1I| − N
2

log 2π. (2.20)

The first term is a quadratic in the observations y, which encourages
a precise fit to the data. On the other hand, the second term acts a
regulariser that discourages overly complex models. Consequently,
optimising the hyperparameters wrt to the marginal likelihood au-
tomatically strikes a balance between data fit and model complexity,
ultimately seeking the simplest model that best explains the data. It is
due to this mechanism that gp models are often characterised as being
inherently robust against over-fitting. However, it is important to note
that the ability to mitigate over-fitting is more accurately attributed to
the marginal likelihood, which is essentially what distinguishes the
Bayesian inference approach from other approaches based purely on
optimisation [286, §5.2].

As with the predictive density in Equation (2.16), the time complex-
ity of evaluating the marginal likelihood is dominated by the O(N3)

cost of computing the matrix inverse and determinant. Furthermore,
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Figure 2.7: Hyperparameter estimation in a gp regression model and its ef-
fects; the two ‘+’ markers correspond to optimal and reasonably-
good-but-not-quite-optimal settings of the hyperparameters (ℓ, β).
The resulting posterior predictive densities, visualised in Fig-
ures 2.3 and 2.7b, respectively, reveal a clear contrast in predictive
uncertainty, with the optimal hyperparameters delivering finely
tuned confidence intervals.

apart from the case of the gp regression model with Gaussian noise
from Equation (2.15), which serves as an exception that proves the
rule, the marginal likelihood is generally analytically intractable for
arguably the majority of interesting models in probabilistic ml. These
two intractabilities have long been recognised as the most significant
challenges in establishing the practicality and widespread adoption of
gps.

2.4.2 Sparse Gaussian Processes

A range of sparse gp methods have been developed over the years sparse Gaussian
processto mitigate these limitations [46, 204, 226, 234]. Broadly speaking,

in sparse gps, one summarises f (·) succinctly in terms of inducing
variables, which are values u ≜ f (Z) taken at a collection of M locations
Z = [z1 · · · zM]⊤, where zm ∈ X . Not least among these approaches
is svgp/sgpr, first proposed by [262], which casts sparse gps within
the framework of vi, which we described earlier in Section 2.2. In this
section, we examine this framework in detail and discuss some of
the extensions for blackbox likelihoods and large-scale inference with
mini-batch training [57, 98, 99].

Specifically, the joint distribution of the model augmented by induc-
ing variables u is p(f, u, y) = p(y | f)p(f, u), where the joint over (f, u)
factorises as p(f, u) = p(f | u)p(u). The prior p(u) is

p(u) = N (0, Kuu), (2.21)
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and the conditional p(f | u) is

p(f | u) = N (f |Qfuu, Kff −Qff), (2.22)

where Qff ≜ QfuKuuQuf and Qfu ≜ KfuK−1
uu . The joint variational

distribution is defined as q(f, u) ≜ q(f | u)q(u) where

q(u) ≜ N (mu, Cu) (2.23)

for variational parameters mu ∈ RM and Cu ∈ RM×M s. t. Cu ⪰ 0.
Commonly, for convenience, one simply defines q(f | u) ≜ p(f | u). At
unseen points f∗ ≜ f (X∗), integrating out u leads to the test predictive
density

q(f∗) = N (f∗ |Q∗umu, K∗∗ −Q∗u(Kuu − Cu)Qu∗) , (2.24)

where parameters mu and Cu are learned by minimising the kl diver-
gence between the approximate and exact posteriors, kl [q(f∗, f, u) ∥ p(f∗, f, u | y)].
Conveniently, since the posteriors factorise as

q(f∗, f, u) = p(f∗ | f, u)q(f, u),

and
p(f∗, f, u | y) = p(f∗ | f, u,Sy)p(f, u | y),

the common factor p(f∗ | f, u) cancels each other to simplify the kl,

kl [q(f∗, f, u) ∥ p(f∗, f, u | y)] = kl [q(f, u) ∥ p(f, u | y)] .

Refer to Section 2.A for details. Now, by Bayes’ rule, we have

kl [q(f, u) ∥ p(f, u | y)] (2.25)

=
∫∫

q(f, u) log
q(f, u)

p(f, u | y) dfdu

= log p(y)−
∫∫

q(f, u) log
p(f, u, y)
q(f, u)

dfdu. (2.26)

The astute reader might find this familiar, as it an instance of the
general expression we examined in Section 2.2. Indeed, if we define
the elbo as

elbo(q) ≜
∫∫

q(f, u) log
p(f, u, y)
q(f, u)

dfdu,

then, upon re-arranging Equation (2.26), we get

log p(y) = elbo(q) + kl [q(f, u) ∥ p(f, u | y)] .

Now, since p(f, u, y) factorises as

p(f, u, y) = p(y | f,Zu)p(f, u) = p(y | f)p(f | u)p(u),



2.4 gaussian processes 25

we can simplify the elbo to

elbo(q) =
∫∫

p(f | u)q(u) log
p(y | f)XXXXp(f | u)p(u)

XXXXp(f | u)q(u) dfdu

=
∫

q(u) log
F(y, u)p(u)

q(u)
du, (2.27)

where we have defined

F(y, u) ≜ exp
(∫

p(f | u) log p(y | f)df
)

. (2.28)

We can re-arrange the elbo of Equation (2.27) into the usual composi-
tion made up of ell and kl divergence terms,

elbo(q) =
∫

q(u) log F(y, u)du− kl [q(u) ∥ p(u)] . (2.29)

Interestingly, log [F(y, u)] is a lower bound on the log conditional
probability log p(y | u) – quite simply, by Jensen’s inequality, we have

log p(y | u) = log Ep(f | u)[p(y | f)]
≥ Ep(f | u)[log p(y | f)] = log F(y, u).

Refer to the manuscript of Hensman, Matthews, and Ghahramani [99,
Equation 1] for a discussion of the role that this “intermediate” lower
bound plays in various contexts.

It is worth mentioning that there are some nuanced technical con-
cerns over whether maximising the elbo in Equation (2.29) truly
minimises the kl divergence between the prior and posterior stochas-
tic processes. We shall not delve further into this issue here except to
note that these were largely resolved by Matthews et al. [165].

optimal variational distribution. From the elbo as ex-
pressed in Equation (2.27), it’s evident that the maximising variational
distribution takes the form q∗(u) ∝ F(y, u)p(u),

q∗(u) =
F(y, u)p(u)∫

F(y, u)p(u)du
. (2.30)

This can also be verified through the use of calculus of variations, as
shown in Section 2.B, or by applying Jensen’s inequality, but in the
opposite direction.

collapsed lower bound. If we now substitute q∗ back into the
elbo, we get the so-called collapsed lower bound,

elbo(q∗) = log
(∫

p(u)F(y, u)du
)

. (2.31)

This bound is “collapsed” in the sense that it is no longer a function
of q (it is already optimal wrt q) but implicitly remains a function
of other (hyper)parameters such as the kernel parameters θ and the
inducing input locations Z.
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2.4.2.1 General Likelihoods

When we make no assumptions about the explicit form of the like-
lihood p(y | f) nor of its structure or behaviour, it is characterised
as “black-box”. The integral that constitutes the ell term in Equa-black-box likelihood

tion (2.29) is generally intractable for black-box likelihoods. However,
if we marginalise out u to rewrite the ell as

∫
q(u) log F(y, u)du =

∫ (∫
q(u)p(f | u)du

)
log p(y | f)df

=
∫

q(f) log p(y | f)df,

we can approximate it efficiently using numerical integration methods
such as Monte Carlo (mc) estimation or quadrature rules, by virtue
of the fact that the marginal q(f) is available in the analytical form of
Equation (2.24) and can thus be sampled easily,

∫
q(f) log p(y | f)df ≈ 1

S

S

∑
s=1

log p(y | f(s)), f(s) ∼ q(f)

Moreover, because q(f) is Gaussian, we can utilise simple and effective
rules like Gauss-Hermite quadrature, described further in Appendix A
for a different application.

2.4.2.2 Factorised Likelihoods (for Scalability)

Further, suppose the likelihood factorises, i. e., the observations de-
pend point-wise on the latent functions,

p(y | f) =
N

∏
n=1

p(yn | fn),

we then have
∫

q(f) log p(y | f)df =
N

∑
n=1

∫
q( fn) log p(yn | fn)d fn.

Therefore, the elbo can be written as

elbo(q) =
N

∑
n=1

Eq( fn)[log p(yn | fn)]− kl [q(u) ∥ p(u)] .

Importantly, it’s clear that this objective is amenable to mini-batch
training for stochastic optimisation [98].

2.4.2.3 Gaussian Likelihood (for Regression)

Now suppose the problem at hand is regression, for which the likeli-
hood of choice is typically the Gaussian from Equation (2.15). We can
show that

F(y, u) = N (y |Qfuu, β−1I)× exp
(
−β

2
tr(Kff −Qff)

)
. (2.32)
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Refer to Section 2.C for detailed derivations. This framework, first
studied in the landmark paper by Titsias [262], is often referred to as
sparse gp regression (sgpr).

optimal variational distribution. Since the likelihood is
Gaussian, by Equation (2.32), the maximiser of the elbo in Equa-
tion (2.30) is the product of two exponentiated-quadratic functions of
u. When normalised, this becomes

q∗(u) = N (u | βKuuM−1Kufy, KuuM−1Kuu), (2.33)

where M ≜ Kuu + βKfuKuf. Refer to Section 2.D for details.

collapsed lower bound. The optimal lower bound wrt q from
Equation (2.31) now becomes

elbo(q∗) = logN (y | 0, Qff + β−1I)− β

2
tr(Kff −Qff).

Refer to Section 2.E for further details. It’s instructive at this point to
compare this with the log marginal likelihood log p(y) of the exact gp

regression setting from Equation (2.20). We readily see that log p(y) =
elbo(q∗) when Qff = Kff. Furthermore, evaluating log p(y) has a
computational complexity of O(N3), whereas calculating the elbo has
a complexity of O(NM2 + M3).

test predictive distribution. Finally, we can obtain the poste-
rior predictive density at test inputs X∗ by substituting the mean and
covariance from Equation (2.33) into mu and Cu from Equation (2.24),

q(f∗) = N
(

f∗ | βK∗uM−1Kufy, K∗∗ −K∗u(K−1
uu −M−1)Ku∗

)
. (2.34)

All told, we see that sgpr has time complexity O(M3) at prediction
time and O(NM2 + M3) during training, with a space complexity of
O(NM + M2), which offers a substantial speedup over exact inference
when M≪ N.

Finding a comprehensive, self-contained resource that provides
derivations of the equations summarised in this section is surprisingly
difficult. Consequently, the pieces necessary to construct the contents
of this section and its derivations are collected variously from the
unpublished technical report of Titsias [263], the technical notes of
Bui and Turner, the paper of Hensman, Matthews, and Ghahramani
[99], as well as the PhD theses of Bui [23], Matthews [168], and Van
der Wilk [272].

For the newcomer to Bayesian statistics, it is instructive to derive
these independently, as they invoke nearly all the essential tools of the
trade, such as identities relating to conditioning, marginalisation, and
affine transformations of Gaussians, the Woodbury matrix identity,
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Jensen’s inequality, calculus of variations, “completing the square”,
including less standard ones such as the “inner-product as outer-
product-trace” identity. We reiterate only a few of these here, as most
can be found in the well-known texts of Deisenroth, Faisal, and Ong
[56, p. MML], Murphy [181, MLaPP], Bishop [16, PRML], and Williams
and Rasmussen [286, GPML].

Deriving the quantities from this section not only provides an ideal
exercise regimen for hands-on practice with these vital tools, taking
the journey from exact gp regression to sgpr, svgp, and its stochastic
variant offers a prime example of a model family that effectively spans
the spectrum of exactness and approximation often present in Bayesian
modelling and vi that we previously alluded to in Section 2.2. This
progression leads us from an exact posterior to an closed-form optimal
variational posterior, followed by a variational posterior optimised wrt
an exact deterministic elbo and, ultimately, to one optimised wrt a
stochastic elbo.

In this section, we have examined sparse gps through the lens of
vi. This framework, which we and others have referred to as svgp,
also goes by the name of the variational free energy (vfe) framework,
owing to the elbo’s interpretation from the perspective of statisti-
cal thermodynamics. The framework known as stochastic variational
gp [98] shares the same acronym as svgp, but specifically pertains to
the scalable mini-batch variant of the vfe framework. Other promi-
nent sparse gp methods, such as the deterministic training conditional
(dtc) [226] and the fully independent training conditional (fitc) [234],
are beyond the scope of this thesis. Nonetheless, the topic of their
connection to vfe is fascinating, and we direct the interested reader
to the manuscript by Bui, Yan, and Turner [22] and the thesis of Bui
[23] for a unifying framework under the umbrella of ep. For further in-
sights and practical implications of their connections, we recommend
the manuscript by Bauer, Wilk, and Rasmussen [9] and the thesis of
Van der Wilk [272].

2.4.3 Random Fourier Features

In the previous section, we examined a kind of gp approximation
that effectively approximates the gp posterior predictive density. Now
let’s examine a different approximation – one that approximates the
covariance function itself, and, therefore, the prior.

Consider the Bayesian linear regression (blr) model with weightsBayesian linear
model w ∈ RL,

f (x) =
L

∑
i=1

wiϕi(x) = ϕ⊤(x)w, (2.35)

for some set of L basis functions, or, features, ϕ(x) = [ϕ1(x) . . . ϕL(x)]⊤ ∈basis functions

RL. As before, in Equation (2.15), the observed targets y are assumed
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to be function values corrupted by additive noise ε, which are further
assumed to be iid Gaussian with zero mean and precision β > 0,

y = f (x) + ε, ε ∼ N (0, β−1). (2.36)

This implies the likelihood p(y |w) = N (y |Φw, β−1I), where Φ ≜
ϕ(X) ∈ RN×L. Suppose we have a Gaussian prior over the weights
p(w) = N (w | 0, Σw). When f is evaluated at a finite collection of
T locations X∗, the vector f∗ = f (X∗) ∈ RT follows the Gaussian
distribution N (f∗ | 0, Φ∗ΣwΦ⊤∗ ) where Φ∗ ≜ ϕ(X∗) ∈ RT×L. In other
words f is by definition a gp with the covariance function k(x, x′) =
ϕ(x)⊤Σwϕ(x′). This is known as the weight-space perspective of weight-space

approximation
gps [286]. Sampling random functions f (·) from the prior amounts
to sampling w ∼ N (0, Σw). Therefore, if Σw is diagonal, as is often
the case in practice, f (·) can be sampled cheaply at a cost of O(L).
Additionally, for a given realisation of w, the corresponding sample
f (x) is a deterministic function – importantly, one that is differentiable
wrt x. Consequently, the weight-space approximation is relied upon
in Thompson sampling [258] to address sequential decision-making
problems that require balancing exploration and exploitation, as we
will discuss further in Section 2.5.2.4.

Now, the posterior weight density is

p(w | y) = N
(

β(Σ−1
w + βΦ⊤Φ)−1Φ⊤y, (Σ−1

w + βΦ⊤Φ)−1
)

(2.37)

Assuming Σw = I, the covariance function is becomes k(x, x′) =

ϕ(x)⊤ϕ(x′) and the posterior density simplifies to

p(w | y) = N
(
(Φ⊤Φ + β−1I)−1Φ⊤y, β−1(Φ⊤Φ + β−1I)−1

)
.

Thus seen, the computational complexity of evaluating this density
is dominated by the cost associated with inverting the matrix Φ⊤Φ +

β−1I. Through judicious application of the Woodbury matrix identity,
this cost is O(min{L, N}3).

Now, by the kernel trick, a kernel k can be seen as an inner product in kernel trick

a reproducing kernel Hilbert space (rkhs) H equipped with a feature
map φ : X → H. For separable H, we can approximate this inner
product as

k(x, x′) = ⟨φ(x), φ(x′)⟩H ≈ ϕ(x)⊤ϕ(x′), (2.38)

for some finite-dimensional feature map ϕ : X → RL. In particular,
let us focus on the stationary covariance functions, which possess
properties that can be leveraged to construct efficient approxima-
tions. Extensions beyond stationary covariance functions are possible
through the application of Mercer’s theorem and the Karhunen–Loève
expansion [30, 73]. In Chapter 3, we discuss an example of this in the
spherical harmonics for zonal covariance functions.
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Figure 2.8: Spectral densities of the stationary covariance functions from Sec-
tion 2.4.1.1.

Kernel κ(t) p(ω)

Se exp
(
− 1

2 t⊤M−1t
)

N
(
0, M−1)

Matérn-3/2
(

1 +
√

3t⊤M−1t
)

exp
(
−
√

3t⊤M−1t
)

t3
(
0, M−1)

Matérn-5/2
(

1 +
√

5t⊤M−1t + 5
3 t⊤M−1t

)
exp

(
−
√

5t⊤M−1t
)

t5
(
0, M−1)

Table 2.1: Fourier transform pairs of stationary covariance function κ(t)
and their spectral density p(ω), with t ≜ x − x′ and M ≜
diag(ℓ2

1, . . . , ℓ2
D).

Theorem 2.4.1 (Bochner’s theorem). A continuous, translation invariant
kernel k(x, x′) = κ(x− x′) is positive definite if and only if it is the Fourier
transform of a nonnegative, finite measure µ,

κ(x− x′) =
∫

e−iω⊤(x−x′) dµ(ω).

If measure µ has a density p(ω), it is referred to as the spectral density,
or, power spectrum, associated with kernel k. We have the followingspectral density

Fourier transform pair,

κ(t) =
∫

p(ω)e−iω⊤t dω, and p(ω) =
1

2π

∫
κ(t)eiω⊤t dt.

(2.39)
For example, for the 1D se kernel from Equation (2.17), we can calcu-
late its corresponding spectral density using Equation (2.39) to obtain

p(ω) = N
(
ω | 0, ℓ−2) . (2.40)

Refer to Section 2.F for details. More generally, for the D-dimensional
se kernel from Equation (2.18), we have

p(ω) = N
(

0, M−1
)

,
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and, for the Matérn-ν kernel from Equation (2.19), we have

p(ω) = t2ν

(
0, M−1

)
,

where t2ν denotes the Student’s t-distribution with 2ν degrees of
freedom. See Table 2.1 for a summary of popular stationary kernels
and their spectral densities. Now, assuming p(ω) is even symmetric,
κ(t) from Equation (2.39) is real-valued and simplifies further to the
Fourier cosine transform,

κ(x− x′) =
∫

p(ω) cos (ω⊤(x− x′))dω

= Ep(ω)[cos (ω⊤(x− x′))]. (2.41)

Let ψω : RD → R2 denote the projection in some random direction
ω ∼ p(ω), mapped to the unit circle,

ψω(x) ≜

[
cos ω⊤x

sin ω⊤x

]
. (2.42)

Using elementary trigonometric identities, we can show that the inner
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Figure 2.9: A example random Fourier features (rff) decomposition of the
se covariance function with characteristic lengthscale ℓ = 5/4.
The exact values of the covariance function are indicated by the
dashed black line.

product of ψω evaluated at inputs x and x′ is

ψω(x)⊤ψω(x′) = cos (ω⊤(x− x′)). (2.43)

Refer to Section 2.G for details. Finally, by Equation (2.41), we recover
the kernel k by taking the expectation of Equation (2.43) on both sides,

Ep(ω)[ψω(x)⊤ψω(x′)] = Ep(ω)[cos (ω⊤(x− x′))] (2.44)

= k(x, x′).
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This shows that the inner product of Equation (2.43) is an unbiased
estimator of k(x, x′). In other words, evaluating the kernel amounts
to computing the expectation in the lhs of Equation (2.44). Hence,
in order to approximate the kernel, we can leverage techniques of
numerical integration [51] to construct a set of basis functions, or,
features, ϕ : X → RL, such that

ϕ(x)⊤ϕ(x′) =
L

∑
i=1

ϕi(x)⊤ϕi(x′) ≈ Ep(ω)[ψω(x)⊤ψω(x′)] = k(x, x′).

We refer to this as the Fourier feature decomposition. Perhaps the mostFourier feature
decomposition well-known example of this is the (award-winning) random Fourier

features (rff) decomposition of Rahimi and Recht [206], in which
ϕi : x 7→

√
2/L cos(ω(i) · x + b(i)) for ω(i) ∼ p(ω) and b(i) ∼ U [0, 2π].

This feature decomposition is based on the relatively straightforward
application of mc estimation in combination with a few trigonometric
identities.

In Appendix A, we provide a detailed derivation of the random
Fourier features (rff) decomposition, in addition to alternative feature
decompositions based on various numerical integration schemes. For
further details on the weight-space approximation and generalisations
beyond stationary covariance functions, the interested reader may refer
to the manuscript of Wilson et al. [291] upon which our treatment of
this topic is based.

2.5 bayesian optimisation

Bayesian optimisation (bo) is a powerful framework for efficiently lo-
cating the global optima of expensive black-box functions [20, 75, 228].
It can be seen as a sequential algorithm for decision-making amidst
the uncertainties inherent in the problem of global optimisation.

Formally, for a real-valued blackbox function f : X → R, the goal
of global optimisation is to locate an input x ∈ X at which it isglobal optimisation

minimised,
x∗ = arg min

x∈X
f (x).

Throughout our presentation, we shall focus on the minimisation prob-
lem without loss of generality, as any maximisation problem can be
translated into a minimisation problem, and vice versa, simply by
negating the function of interest. In contrast with classical mathemati-
cal optimisation, which frequently rely upon a number of simplifying
assumptions, bo is particularly well-equipped to address problems
with the following general properties:

opaque . The functions are largely inscrutable, lacking a well-
defined functional form or useful closed-form expression (hence,
characterised as “black boxes”). Additionally, these functions do not
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Algorithm 1: A generic sequential decision-making procedure
for optimisation.
Input: blackbox function f : X → R, initial dataset D0.
repeat

xN ← policy(DN−1) // suggest next candidate location

yN ← evaluate(xN) // evaluate f at the suggested location

DN ← DN−1 ∪ {(xN , yN)} // update dataset

N ← N + 1
until termination condition satisfied

provide helpful “hints” or “clues” typically exploited by traditional
optimisation methods, such as first-order gradients, let alone higher-
order derivatives. Lastly, the function is assumed to be nonconvex,
which is to say that a local optimum is not automatically considered a
globally optimal solution.

expensive . The functions are assumed to be costly to evaluate.
Since evaluations require substantial resources like time and money,
the function cannot be trivially optimised by exhaustive evaluation.

imprecise . The mechanism by which the function is evaluated is
assumed to be imperfect, involving randomness, low-fidelity simula-
tion, or indirect observations through noisy measurements.

Simply stated, bo only requires a way to obtain noisy observations
of an objective function at suggested locations. It should go without
saying that these characteristics are not preconditions for bo, but rather
represent the complex problem scenarios where bo demonstrates its
strength and versatility.

Every optimisation procedure boils down to making a series of deci-
sions. In each iteration, we are tasked with deciding which candidate sequential

decision-makinglocation is the most promising to evaluate next. These decisions must
be made in the face of uncertainty, as we cannot know the outcome of
an evaluation beforehand, even with access to past observations. Fur-
ther, the sequential nature of the optimisation process exacerbates the
impact of this uncertainty. Any sound optimisation framework must
be equipped manage this uncertainty. In light of these considerations,
it is helpful to approach bo from the perspective of Bayesian decision
theory [12, 54], which views it as a principled framework that provides Bayesian decision

theorya systematic approach to decision-making under uncertainty tailored
for global optimisation. Thus, our remaining treatment of this topic
will follow the decision-theoretic introduction provided by Garnett
[75].

The procedure in Algorithm 1 formalises a generic approach to
global optimisation. The procedure is initialised with a dataset D0,
which typically consists of a small handful of existing observations
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made at randomly-selected locations. For notational simplicity, sup-
pose D0 = ∅. Then, in iteration N, the dataset consists of past observa-
tions DN = {xn, yn}N

n=1, where yn = f (xn) + ε for some additive noise
ε. In other words, output yn is the (inexact) function value at input xn,
assumed to be corrupted by some noise, typically Gaussian distributed
ε ∼ N (0, β−1), with some precision β > 0. This effectively leads
to the observation model previously introduced in Equations (2.15)
and (2.36).

Now, the observed dataset DN (which can be viewed as the state) isstate

mapped, through an optimisation policy, to the candidate location x tooptimisation policy

be evaluated next (which can be viewed as an action). This location xaction
is in turn mapped, through evaluation of the blackbox function, to a
corresponding value y (which can be viewed as the outcome). Finally,outcome

the state is updated by appending the new observation (x, y) to the
dataset, and the process is repeated until the termination criteria are
met.

The optimisation policy varies along two principal axes. They are
either: (1) deterministic or stochastic, and (2) adaptive or non-adaptive.
Non-adaptive policies disregard the data, exemplified by methods
such as grid search and random search [13], which are in turn repre-
sentative of deterministic and stochastic policies, respectively. On the
other hand, bo methods are driven by adaptive optimisation policies
that leverage past data to make informed future decisions.

Accordingly, a hallmark of bo methods is that they maintain a prob-
abilistic model known as the surrogate model, which encapsulates oursurrogate model

knowledge and beliefs about the unknown function. These beliefs are
continuously updated as new data is acquired, allowing the algorithm
to adapt its behaviour to make optimal decisions based on the evolv-
ing information. In addition to the surrogate model, often a utility
function U(y) is specified to encode our preferences for the kinds of ob-utility function

servations that are considered useful. These preferences are connected
to the posterior beliefs, through the surrogate model’s posterior pre-
dictive density p(y | x,DN), to form the acquisition function α(x;DN),
which serves as a criterion or score for candidate locations, indicat-acquisition function

ing the benefit they bring to the optimisation procedure. Ultimately,
the optimisation policy produces the maximiser of the acquisition
function,

policy : DN 7→ arg max
x∈X

α(x;DN).

The reason that this approach works at all (namely, optimising a func-
tion by optimising yet another function) is that the acquisition function
is designed to be more manageable than the unknown function f (x).
Specifically, the acquisition function is usually relatively inexpensive
to evaluate, possesses closed-form expressions, and offers analytically
tractable gradients. As a result, they can be optimised efficiently using
conventional, readily available mathematical optimisation methods.
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All acquisition functions try to negotiate between the opposing
forces of exploration and exploitation. In the context of optimisation,
exploitation is the tendency to favour locations where the function
value is expected to be low (assuming the goal is minimisation),
while exploration is the tendency to favour locations where there is
a high degree of uncertainty concerning the function value, enabling
the acquisition of more data to improve the model and make more
informed decisions in the future. The key to an effective optimisation
approach lies in striking a balance within the acquisition function,
ensuring that neither force overpowers the other.

In the remainder of this section, we provide an overview of the key
components we have introduced, namely, the surrogate model and
acquisition function. In particular, we examine the main considerations
for their design and discuss several proven approaches.

Before moving on, a quick word on notation: throughout the earlier
chapters we have used p( f∗ | y) to denote the posterior predictive
density. This is itself a shorthand for p( f∗ | x∗, X, y), which, considering
that DN is another way to denote (X, y), is not too dissimilar to the
p(y | x,DN) notation used here. In the present context, the asterisks are
no longer required for the purpose of distinguishing unseen test points
as the observations are instead disambiguated by indexed subscripts
(i. e., xn, yn).

2.5.1 Surrogate Models

From the high-level description of bo we have presented above, it
shouldn’t be difficult to appreciate the importance of having a consis-
tent framework for systematically reasoning about unknown functions.
Therefore, it is not surprising that gps have emerged as the predomi-
nant model family in bo. Indeed, bo is often regarded as the “killer
application” for gps.

gps possess several compelling characteristics that make them an
ideal choice as surrogate models for bo. First and foremost, gp mod-
els offer reliable and well-calibrated predictive uncertainty estimates,
which has proven to be of crucial importance in practice [228]. Second,
to be specific, the gp regression model with Gaussian noise (i. e., the
“textbook” version described in Section 2.4) stands out as a rare ex-
ample of a highly-flexible model that retains its analytical tractability.
Notably, both the posterior predictive density and the marginal likeli-
hood can be computed analytically – see Equations (2.16) and (2.20).
This tractability is crucial, as eliminating the need for approximate
inference implies not having to compromise on the quality and accu-
racy of uncertainty quantification and hyperparameter estimation for
Bayesian model selection. Despite their favorable tractability proper-
ties, gps remain highly expressive, incorporating only a limited set
of assumptions related to smoothness, stationarity, and characteristic
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lengthscales. These assumptions are generally mild and do not im-
pose significant restrictions in most problems. On the contrary, such
assumptions often prove beneficial in many real-world optimisation
problems.

With this being said, it’s always possible to find counterexamples
of problem scenarios in bo for which gps are ill-suited. When the
unknown function is believed to exhibit nonstationary behaviour,
augmenting a stationary covariance function by warping the inputsnonstationarity

through a nonlinear mapping can create a more expressive nonstation-input warping
ary covariance function. Notable examples of such warping functions
include using cdfs that are flexible yet succinctly parameterised [238]
or employing deep neural networks (dnns) [28, 288]. Similarly, when
the measurement error is believed to be heteroscedastic, extensions canheteroscedasticity

applied to the observation model [89, 159]. In more complex scenarios
involving discrete (ordered and unordered) inputs [77], sequential
inputs [178], or structured inputs with conditional dependencies [116],
it can be challenging to devise useful covariance functions. It goes
without saying that even the most promising approaches introduce a
significant footprint to the framework, not least in terms of computa-
tional overhead or additional parameters to contend with. Moreover,
none of this makes mention of the fact that there is no straightfor-
ward workaround for the more fundamental limitation of exact gp

regression, which has a computational cost that scales cubically with
the number of observations. This limitation precludes running bo for
extended horizons on problems that require numerous evaluations
to reach a global optimum. While the sparse gp approximations de-
scribed in Section 2.4.2 can be readily applied, it is essential to allocate
the inducing points properly [179]. Neglecting this careful allocation
often leads to impractical solutions with degraded performance due
to poorly calibrated uncertainty estimates [228].

If resorting to approximations becomes inevitable, it stands to rea-
son that leveraging alternative estimators that are explicitly designed
to address these specific problem scenarios could potentially pro-
vide greater advantages. For example, when dealing with functions
involving discrete or structured inputs or high-dimensionalities, en-
sembles of decision tree regressors such as extreme gradient-boosting
(xgboost) [34] and random forests (rfs) [19] offer attractive alterna-
tives. In particular, rfs underpin the popular sequential model-based
algorithm configuration (smac) method [111]. In a similar vein, the
tree-structured Parzen estimator (tpe) method [14], on which we ex-
pand further in Chapter 5, has also enjoyed considerable success.
These approaches can handle complex input structures and have
proven effective in various applications, particularly in hyperparame-
ter optimisation (hpo) for automated machine learning (automl).

Similarly, for modelling nonstationarity, capturing nonlinear be-
haviour, or handling multi-output functions in settings like multi-
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task [255], multi-fidelity [124], or multi-objective [101] optimisation,
bnns provide an attractive choice [200, 237, 243, 281]. The prominent
approaches are Bayesian to varying extents. For instance, Snoek et al.
[237] consider a Bayesian treatment of only the final layer of weights
in a posthoc manner, effectively leading to the blr model described
in Section 2.4.3 with neural network (nn) basis functions. In contrast,
Springenberg et al. [243] adopt a more thoroughly Bayesian approach
that encompasses all the nn weights, and utilise sampling-based in-
ference, specifically, stochastic gradient Hamiltonian Monte Carlo
(sghmc) [33], to approximate the posterior predictive density. Recent
efforts to enhance the performance of bnns in bo have focused on
leveraging the latest advancements in Bayesian deep learning [131,
145].

Thus seen, ensuring tractability of the posterior predictive density
often necessitates making compromises in the form of simplifications
and crude approximations. Unfortunately, these compromises can
often inhibit the expressive power and the range of benefits offered
by these alternative surrogate model families. Consequently, there is
no model family that can perfectly address all problem scenarios and
provide an ideal solution without incurring some trade-offs.

In Chapter 5, we explore an alternative paradigm for bo that circum-
vents the need for an explicit model of the unknown function, instead
focusing on directly approximating the acquisition function. This re-
framing effectively sidesteps the tractability requirements and opens
the door to powerful model families that would otherwise render the
predictive density unwieldy or simply intractable to compute.

2.5.2 Acquisition Functions

Almost without exception, acquisition functions rely on the predictive
density to represent posterior beliefs about the unknown function
in order to score the potential benefit of a candidate location. In cer-
tain cases, this score incorporates a preference for outcomes specified
through a utility function. This thesis is primarily concerned with
acquisition functions of this nature, so-called the improvement-based
acquisition functions, such as the well-established probability of im- improvement-based

acquisition functionprovement (pi) [117] and expected improvement (ei) [176]. Despite the
emergence of numerous new and sophisticated acquisition functions
like knowledge gradient (kg) [225], entropy search (es) [96], predictive
es (pes) [102], and their variants [279], the improvement-based acquisi-
tion functions remain widely used. Such functions can generally be
expressed as an expectation of the utility function, expected utility

α(x;DN , τ) ≜ Ep(y | x,DN)[U(y; τ)], (2.45)

where τ denotes a parameter representing some threshold and U(y; τ)

denotes a utility function that typically depends on the difference be-
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tween τ and y (i. e., the “improvement”). By convention, τ is set to the
incumbent, the lowest function value observed so far, τ = minn yn [290].

2.5.2.1 Probability of Improvement

In the classical pi acquisition function [117], the utility function simply
indicates whether y improves upon some threshold τ,

UPI(y, τ) ≜ I(τ − y > 0). (2.46)

Suppose the posterior predictive density takes the form of a Gaussian

p(y | x,DN) = N (y | µ(x), σ2(x)). (2.47)

Then, Equation (2.45) leads to

αPI(x;DN , τ) = p(y ≤ τ | x,DN) = Ψ(Zτ(x)), (2.48)

where

Zτ(x) ≜
τ − µ(x)

σ(x)
,

and Ψ denotes the cdf of the standard normal distribution

2.5.2.2 Expected Improvement (EI)

In ei [176], the utility function quantifies the nonnegative amount by
which y improves upon threshold τ,

UEI(y, τ) ≜ max(τ − y, 0). (2.49)

This is known as the improvement utility function. When the predic-
tive density is the Gaussian from Equation (2.47), the expectation
from Equation (2.45) is of the improvement utility function (hence the
name), and evaluates to

αEI(x;DN , τ) = σ(x) · [Zτ(x) ·Ψ(Zτ(x)) + ψ(Zτ(x))] , (2.50)

where ψ denotes the pdf of the standard normal distribution.
In Figure 2.10, we plot the ei/pi criteria as functions of the posterior

predictive mean µ(x) and variance σ2(x). We see that the value to
which pi assigns x depends primarily on whether the predictive mean
µ(x) exceeds the threshold, in this example τ = 0, and less so on
the predictive variance σ2(x). Furthermore, particularly when the
predictive variance is close to zero, the function is essentially piecewise
constant with a discontinuity at τ. In other words, and as can be
expected from simply looking at its analytical expression alone, pi

either rewards a high or low value depending on whether or not µ(x)
exceeds the threshold, but is indifferent to the amount by which it does.
In practice, this can lead to the optimisation procedure getting stuck
in local optima and inadequately exploring the search space [75]. In
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Figure 2.10: Values of improvement-based acquisition functions plotted in
terms of the posterior predictive mean µ(x) and variance σ2(x).
pi (left) heavily favours exploitation while ei (right) strikes a
slightly better balance between exploitation and exploration.

contrast, the ei criterion does take into account the amount by which
a candidate location in expectation improves upon the threshold.
Furthermore, broadly speaking, for any given fixed value of µ(x), the
reward assigned by ei increases as the uncertainty, or, more precisely,
the variance σ2(x), increases. Thus seen, ei is less prone than pi to
exploit too aggressively to its own detriment.

While the exact expressions of Equations (2.48) and (2.50) are both
easy to evaluate and optimise, the conditions necessary to satisfy
Equation (2.47) can often come at the expense of flexibility and expres-
siveness. In Chapter 5, we will consider an altogether different way to
express pi/ei themselves.

2.5.2.3 Upper/Lower Confidence Bound

The upper confidence bound (ucb) [244] function is another popular
criterion. ucb has its roots in the multi-armed bandits literature [135]
and come with favorable theoretical properties and provable regret
bounds. To maintain consistency with our running context of function
minimisation, we shall discuss the lcb. Like pi/ei the lcb criterion can
also be expressed in terms of the predictive mean and variance µ and
σ2,

αLCB(x;DN , λ) ≜ −µ(x) +
√

λ · σ(x),
where, similar to τ in the improvement-based criteria, λ is a parameter
that controls the tendency to explore. Interestingly, ucb/lcb cannot
be expressed in terms of the expected utility from Equation (2.45).
ucb/lcb is known as an optimistic acquisition function, since, by de- optimistic

acquisition functionsign, it behaves optimistically in the presence of uncertainty. Indeed,
from Figure 2.11, we readily see that it assigns greater value to loca-
tions x where the level of uncertainty, or, more precisely, the predictive
variance σ2(x), is high.



40 background

0 2 4 6

σ2(x)

−2

0

2

µ
(x

)

Lower Confidence Bound (β = 1)

−2

0

2

4

Figure 2.11: Values of the lower confidence bound (lcb) criterion with λ =
1 plotted in terms of the posterior predictive mean µ(x) and
variance σ2(x). lcb is said to favour exploration, since it behaves
optimistically in the face of uncertainty – a higher value is
assigned to regions where the variance σ2(x) is large.

2.5.2.4 Thompson Sampling

Thompson sampling, a widely-used optimisation policy in bo, was
adapted for continuous optimisation from a policy originally proposed
for the multi-armed bandit problem almost a century ago [258].

Unlike the acquisition functions discussed earlier, which represented
adaptive, deterministic policies, Thompson sampling is an adaptive,
stochastic policy. Like previous acquisition functions, it still depends on
the posterior predictive distribution, but does not explicitly involve the
predictive mean and variance. Instead, Thompson sampling involves
realisations of the unknown objective function randomly sampled
from the predictive distribution itself,

αTS(x;DN) ≜ f (x), f ∼ p( f∗ | x∗, X, y).

In other words, while the improvement-based polices from Sections 2.5.2.1
and 2.5.2.2 select the best candidate solution in expectation by averaging
over the objective functions, Thompson sampling determines the best
candidate solution according to a randomly sampled objective function.
Thus seen, this approach balances exploration and exploitation by
sampling observations proportional to their probability of optimality,
effectively encouraging exploitation, while the stochasticity inherent
in random sampling ensures exploration [75].

In practice, sampling random functions from a gp that can be evalu-
ated at arbitrary points, let alone efficiently optimised, poses a con-
siderable challenge. Consequently, a dominant approach adopts the
weight-space perspective of gps, leveraging its spectral decomposition
to obtain a posterior weight density. Weights w can be sampled effi-
ciently from this posterior and used to construct random functions
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f (x) ≜ w⊤ϕ(x) that are (approximately) equal in distribution to gp

posterior samples, yet are easy to manipulate and optimise [102, 228,
289, 291]. In Appendix A, we explore the use of various numerical
integration methods to further improve the computational efficiency
of sampling random functions from gp posteriors.

2.6 summary

This chapter laid the essential groundwork for our thesis by intro-
ducing fundamental concepts in probabilistic modelling, Bayesian
statistics, and variational inference. We highlighted the role of statisti-
cal divergences and density-ratio estimation in approximate inference,
establishing a foundation for advanced topics in probabilistic ml. Our
discussion also included Gaussian processes and their sparse approx-
imations based on vi, concluding with the basic concepts behind
Bayesian optimisation.

Our discussion of Gaussian processes and variational inference set
the stage for our subsequent exploration of orthogonally-decoupled
sparse Gaussian processes with spherical neural network activation
features. This forms the focus of Chapter 3, representing a unique
integration neural networks with Gaussian processes. Similarly, our
examination of variational inference, the variational estimation of f -
divergences, and density-ratio estimation, laid the groundwork for
a new derivation of cyclegans from the perspective of approximate
Bayesian inference, which we examine in Chapter 4. Lastly, the ba-
sic concepts of density-ratio estimation and Bayesian optimisation
introduced here forms the basis for our model-agnostic approach to
Bayesian optimisation based on binary classification, which we discuss
in Chapter 5.

In summary, this chapter provides the the necessary foundation for
the advanced methodologies described in the subsequent chapters,
bridging fundamental principles with new perspectives in probabilis-
tic ml.





A D D E N D U M

2.a kl divergence simplification

The kl divergence simplifies as follows:

kl [q(f∗, f, u) ∥ p(f∗, f, u | y)]

=
∫∫∫

p(f∗ | f, u)q(f, u) log
XXXXXXp(f∗ | f, u)q(f, u)

XXXXXXp(f∗ | f, u)p(f, u | y) df∗dfdu

=
∫∫

q(f, u) log
q(f, u)

p(f, u | y) dfdu = kl [q(f, u) ∥ p(f, u | y)] .

2.b optimal variational distribution for general like-
lihoods

We have

elbo(q) =
∫∫

p(f | u)q(u) log p(y | f)dfdu +
∫∫

p(f | u)q(u) log
p(u)
q(u)

dfdu

=
∫

q(u)
(∫

p(f | u) log p(y | f)df
)

du +
∫

q(u) log
p(u)
q(u)

du

=
∫

q(u) log F(y, u)du +
∫

q(u) log
p(u)
q(u)

du

=
∫

q(u) log
F(y, u)p(u)

q(u)
du.

Taking the functional derivative of the elbo wrt to q(u), we get

∂

∂q(u)
elbo(q) =

∂

∂q(u)

(∫
log

F(y, u)p(u)
q(u)

q(u)du
)

=
∫

∂

∂q(u)

(
log

F(y, u)p(u)
q(u)

q(u)
)

du

=
∫

log
F(y, u)p(u)

q(u)

(
∂

∂q(u)
q(u)

)
+

q(u)
(

∂

∂q(u)
log

F(y, u)p(u)
q(u)

)
du

=
∫

log
F(y, u)p(u)

q(u)
+ q(u)

(
− 1

q(u)

)
du

=
∫

log F(y, u) + log p(u)− log q(u)− 1 du.

Setting this expression to zero, we obtain

log q∗(u) = log F(y, u) + log p(u)− 1

⇒ q∗(u) ∝ F(y, u)p(u).

43
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2.c intermediate lower bound for gaussian likelihoods

To carry out this derivation, we will need to recall the following two
straightforward identities. First, we can express the inner product
between two vectors as the trace of their outer product,

a⊤b = tr(ab⊤).

Second, we have the following relationship between the covariance
matrix Cov[a] and the auto-correlation matrix E[aa⊤],

Cov[a] = E[aa⊤]−E[a]E[a]⊤

⇔ E[aa⊤] = Cov[a] + E[a]E[a]⊤

Additionally, let’s denote the mean and covariance of the prior condi-
tional p(f | u) in Equation (2.22) as

b ≜ Qfuu, and Sff ≜ Kff −Qff,

respectively. Together, these allow us to write

log F(y, u) =
∫

logN (y|f, β−1I)N (f | b, Sff)df

= −β

2

∫
(y− f)⊤(y− f)N (f | b, Sff)df− N

2
log (2πβ−1)

= −β

2

∫
tr
(

yy⊤ − 2yf⊤ + ff⊤
)
N (f | b, Sff)df− N

2
log (2πβ−1)

= −β

2
tr
(

yy⊤ − 2yb⊤ + Sff + bb⊤
)
− N

2
log (2πβ−1)

= −β

2
(y− b)⊤(y− b)− N

2
log (2πβ−1)− β

2
tr(Sff)

= logN (y | b, β−1I)− β

2
tr(Sff).

Therefore, we have

F(y, u) = N (y | b, β−1I)× exp
(
−β

2
tr(Sff)

)
. (2.51)

as required.

2.d optimal variational distribution for gaussian like-
lihoods

Firstly, the optimal variational distribution can be found in closed-form
as

q∗(u) ∝ F(y, u)p(u)

∝ N (y |Qfuu, β−1I)N (u | 0, Kuu)

∝ exp
(
−β

2
(y−Qfuu)⊤(y−Qfuu)− 1

2
u⊤K−1

uu u
)

∝ exp
(
−1

2

(
u⊤Λu− 2β(Qufy)⊤u

))
,
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where

Λ ≜ K−1
uu + βQufQfu = K−1

uu(Kuu + βKufKfu)K−1
uu .

By completing the square, we get

q∗(u) ∝ exp
(
−1

2
(u− βΛ−1Qufy)⊤Λ(u− βΛ−1Qufy)

)

∝ N (u | βΛ−1Qufy, Λ−1).

If we define
M ≜ Kuu + βKufKfu

so that
Λ = K−1

uu MK−1
uu ,

we finally get

q∗(u) = N (u | βKuuM−1Kufy, KuuM−1Kuu),

as required.

2.e collapsed lower bound for gaussian likelihoods

We have

elbo(q∗) = log
(∫

p(u)F(y, u)du
)

= log
[

exp
(
−β

2
tr(Sff)

) ∫
N (y |Qfuu, β−1I)p(u)du

]

= log
∫
N (y |Qfuu, β−1I)N (u | 0, Kuu)du− β

2
tr(Sff)

= logN (y | 0, β−1I + QfuKuuQuf)−
β

2
tr(Sff)

= logN (y | 0, Qff + β−1I)− β

2
tr(Sff).

2.f spectral density of the squared exponential kernel

We calculate the spectral density for the se kernel in 1D from Equa-
tion (2.17). Using Equation (2.39), we have

p(ω) =
1

2π

∫
k(t, 0)eiωt dt

=
ℓ√
2π

∫
N (t | 0, ℓ2)eiωt dt

=
ℓ√
2π

exp
(
−1

2
ℓ2ω2

)
= N

(
ω | 0, ℓ−2) ,

as required.
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2.g cosine difference as inner product

Firstly, recall the angle sum-and-difference trigonometric identity,

cos α± β = cos α cos β∓ sin α sin β. (2.52)

Taking the inner product of ψω evaluated at inputs x and x′, we obtain

ψω(x)⊤ψω(x′) = cos (ω⊤x) cos (ω⊤x′) + sin (ω⊤x) sin (ω⊤x′) (2.53)

= cos (ω⊤(x− x′)),

as required.


