INTRODUCTION

Artificial intelligence (A1) stands poised to be among the most disrup-
tive technologies of our era. The breakneck pace of recent A1 advance-
ments has been spearheaded by machine learning (ML), particularly
the resurgence of deep learning. Deep learning is as old as the first
general-purpose electronic computer; with roots tracing back to the
1940s and ’50s [169, 219], the revival of deep learning, beginning in the
early 2010s, was catalysed by a series of breakthroughs that shattered
previously perceived limitations and captivated the collective imagina-
tion. These breakthroughs span various domains, including computer
vision [84, 133, 211, 217], speech recognition [87, 103], natural lan-
guage processing [21, 274], protein folding [121], generative art and
artificial creativity [86, 104, 208, 215], as well as reinforcement learn-
ing for robotics control [147, 175] and achieving superhuman-level
gameplay [174, 232].

Nevertheless, it is crucial to view these developments as means to
an ultimate end rather than an end in themselves. Arguably, the true
pinnacle of Ar's capabilities lies in optimal decision-making, whether
that entails offering analyses and insights to aid humans in making
better decisions or completely automating the decision-making pro-
cess altogether. Practically any task directed towards a well-defined
objective can be boiled down to a cascade of decisions. At a fun-
damental level, operating a vehicle involves a continuous stream of
decisions involving accelerating, braking, and turning. Financial trad-
ing revolves around decisions to buy, sell, or hold various assets. Even
complex engineering tasks, such as designing an aerofoil, involve
a sequence of decisions about adjusting design variables to achieve
desirable aerodynamic characteristics.

Yet, the intricacies of decision-making surpass what any single ad-
vancement in deep learning can address. While convolutional neural
networks (CNNs) can facilitate object detection tasks in autonomous ve-
hicles, recurrent neural networks (RNNs) can aid in forecasting market
dynamics for systematic trading, and physics-informed NNs can assist
in predicting aerodynamic effects, it remains the case that no target
or quantity of interest can be entirely known or predictable (indeed,
if they were, the pursuit of predictive modelling and ML would be
superfluous). Instead, predictions often prove unreliable, or at best,
uncertain, due to the limitations of our knowledge and the complexity
and variability inherent in the underlying real-world processes. The
impressive power of deep learning models often overshadows their
ignorance of the limits of their own knowledge and the extent of
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uncertainty in their predictions. When these predictions are integrated
into a sequential decision-making framework, such uncertainty can
amplify, compound, and lead to catastrophic consequences. In the con-
text of aeronautical engineering, this could result in inefficient designs;
in quantitative finance, it can lead to devastating capital losses; and in
autonomous driving, it can even cost lives.

PROBABILISTIC MACHINE LEARNING. Grounded in the laws of
probability and Bayesian statistics [10, 138], probabilistic ML provides a
consistent framework for systematically reasoning about the unknown.
The probabilistic approach to ML acknowledges that the real world
is fraught with uncertainty and embraces this uncertainty as an in-
herent part of decision-making. Unlike traditional methods, including
those of deep learning, it recognises model predictions not as absolute
truths that can be represented as single point estimates produced from a
deterministic mapping, but as full probability distributions that capture
the potential outcomes of a random variable as it propagates through
some underlying data-generating process. In a probabilistic model, all
quantities are treated as random variables governed by probability
distributions — the data are treated as observed variables, which are
influenced by some underlying hidden variables, e. g., the model pa-
rameters. A prior distribution is used to express reasonable values for
these hidden variables and to eliminate implausible ones. The rela-
tionship between observed and hidden variables is described using
the likelihood, and the process of Bayesian inference amounts to calcu-
lating, using basic laws of probability, a posterior distribution over the
hidden factors conditioned on the observed data, which can be seen
as a refinement of the prior beliefs in light of new evidence. While
the posterior distribution can be useful in and of itself, its primary
role lies in facilitating subsequent prediction and decision-making
by providing full probability distributions over predicted outcomes.
This capability allows the decision-maker to assess the range of pos-
sible scenarios and their associated probabilities, enabling a more
nuanced understanding of uncertainty and risk, which is indispens-
able in complex, dynamic environments where the repercussions of
incorrect decisions can be severe. In essence, probabilistic ML equips
autonomous decision-making systems with a probabilistic worldview,
enabling them to navigate ambiguity and make sound decisions in
the face of imperfect information.

PROBABILISTIC ML VS. DEEP LEARNING. While deep learning has
dominated recent A1 advances, probabilistic ML remains as important
as ever and continues to offer valuable tools for addressing Ar chal-
lenges that can not be fully resolved by deep learning alone. Although
both approaches can be combined to create hybrid methods that
leverage their respective strengths, some defining characteristics have
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traditionally set deep learning apart from probabilistic ML. Perhaps
most notably, probabilistic ML approaches can achieve remarkable
predictive performance even when data is scarce. In contrast, deep
learning models tend to be data-intensive by nature, often demanding
datasets of a scale proportional to their size (i.e., their parameter
count) [106], which has seen explosive growth in recent years [3, 194,
205, 231, 266]. With that being said, inference in many probabilistic
models poses computational problems that are difficult to scale. On
the other hand, deep learning approaches have excelled in scalability,
a key factor contributing to their widespread success. This scalabil-
ity is bolstered by their compatibility with various speed-enhancing
mechanisms such as stochastic optimisation, specialised hardware ac-
celerators (Gpus and TPUS), as well as distributed and/or cloud-based
computing infrastructure. To bridge this gap, substantial research ef-
fort has been devoted to enabling probabilistic ML to benefit from these
advantages through optimisation-based approximations to Bayesian
inference [118].

Moreover, as mentioned earlier, these paradigms are by no means
mutually exclusive. Indeed, it is often possible to directly extend
existing models with a Bayesian treatment of their parameters, adding
a layer of probabilistic reasoning to the model, and allowing it to not
only make predictions but also estimate the uncertainty associated
with those predictions. An excellent example is the Bayesian neural
network (BNN), which treats the weights as hidden variables and
leverages posterior inference to provide predictions while estimating
associated uncertainties, delivering a more robust and principled
approach to deep learning [18, 154, 185].

The Bayesian formalism naturally gives rise to many popular meth-
ods and paradigms, often in the form of point estimates or other
kinds of approximations. The quintessential example of this is found
in linear regression, in particular, in ridge and lasso regression [260],
which correspond variously to maximum a posteriori (MAP) estimates
in Bayesian linear regression (BLR) models with prior distributions pos-
sessing different sparsity-inducing characteristics [82] — more broadly,
mitigations against over-fitting tend to arise organically in Bayesian
methods, which is why they are frequently characterised as being
fundamentally more robust against over-fitting [286, §5.2]. Likewise,
the once a4 la mode support vector machines (svMs) can be seen as
MAP estimates for a class of nonparametric Bayesian models [195],
dropout [246] in NNs can be seen as a variational approximation to
exact inference in BNNs [74], and unsupervised learning methods
such as factor analysis (Fa) [242] and principal component analysis
(rca) [198] are instances of a class of latent variable models (Lvms) [8,
261] known as linear-Gaussian factor models [221], to name just a
few examples. Time and again, classical approaches have not only
benefitted from being viewed through the Bayesian perspective but
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have also been enriched and redefined by the depth of insights this
framework provides.

1.1 THESIS GOALS

The over-arching goal of this thesis is to continue advancing the inte-
gration and cross-pollination between deep learning and probabilistic
ML. We aim to further the interplay between these two fields, both by
incorporating probabilistic interpretations and uncertainty quantifi-
cation into popular deep learning frameworks, and by leveraging the
representational power of deep NNs to improve established Bayesian
methods. This dual-pronged approach provides fresh perspectives and
taps the complementary strengths of both paradigms, advancing the
foundations of A1 and facilitating the development of more capable
and dependable decision support frameworks. Ultimately, we strive to
unlock the potential of deep learning within high-impact probabilistic
ML methodologies, and to lend useful Bayesian perspectives on current
deep learning techniques.

GAUSSIAN PROCESS MODELS.  Arguably, no family of probabilistic
models embodies the ethos of probabilistic ML and illustrates its nu-
ances and parallels with deep learning quite like the Gaussian process
(Gp). Accordingly, they shall occupy a prominent place in our thesis. In
particular, Gps stand out as the ideal choice when dealing with limited
data, offer the flexibility to encode prior beliefs through the covariance
function, and provide predictive uncertainty estimates with a fine
calibration that is second to none. Conversely, they are challenging to
scale to large datasets, a limitation that has spurred extensive research
and development efforts. Furthermore, in contrast to deep learning
models, which are often lauded for their ability to automatically un-
cover valuable patterns and features in data, Gps have at times been
dismissed as unsophisticated smoothing mechanisms [157]. Despite
these apparent disparities, Gps are intricately connected to NNs in nu-
merous ways. Among these, one of the most classical and well-known
relationships is the convergence of single-layer NNs with randomly
initialised weights toward Grs in the infinite-width limit [185]. Similar
links have also been identified between Grs and infinitely wide deep
NNs [143, 166].

In an effort to elevate the representational capabilities of Gps to a
level comparable with deep NNs, deep Grs (DGPs) [49] stack together
multiple layers of Gps. Additional efforts to construct efficient sparse
GP approximations have leveraged the advantageous properties of
computations on the hypersphere [65], which has led to pGr models in
which the propagation of posterior predictive means is equivalent to
a forward pass through a deep NN [66, 252]. Notably, as a side effect,
this model effectively provides uncertainty estimates for deep NN
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through its predictive variance. Among the contributions of our thesis
is the further development of this framework, integrating cutting-
edge techniques [223, 230] to address some of its practical limitations,
thereby narrowing the performance gap between Grs and deep NNs.

Probabilistic models, serving a crucial role as decision support tools,
routinely aid scientific discovery in fields such as physics and as-
tronomy, guiding advancements in areas of medicine and healthcare
encompassing bioinformatics, epidemiology, and medical diagnosis.
Beyond that, these models have wide-ranging applications in eco-
nomics, econometrics, and the social sciences. Moreover, they are
indispensable in various engineering disciplines, such as robotics
and environmental engineering. Among the many probabilistic mod-
els, Gps stand out as a powerful driving force behind a number of
important sequential decision-making frameworks, including active
learning [108] and reinforcement learning [55], and the broader area
of probabilistic numerics at large [95]. Notably, Bayesian optimisation
(BO) [20, 75, 228] is one major area that relies heavily on Gps and will
feature extensively in our thesis.

BAYESIAN OPTIMISATION. Bayesian optimisation (BO) is a pow-
erful methodology dedicated to the global optimisation of complex
and resource-intensive objective functions. In contrast to classical opti-
misation methods, Bo excels even when dealing with functions that
lack strong assumptions or guarantees. These functions may not be
convex, possess no gradients, lack a well-defined mathematical form,
and observable only indirectly through noisy measurements.

At its core, BO is a sequential decision-making algorithm. It relies
on observations from past function evaluations to determine the next
candidate location for evaluation in pursuit of optimal solutions. Bo
leverages a probabilistic model, often a Gr, to represent its knowledge
and beliefs about the unknown function. This model is continuously
updated with the acquisition of each new observation, enabling the
algorithm to adapt its behaviour and make sound decisions based on
the evolving information.

BO effectively manages uncertainty inherent in such sequential
decision-making processes by making use of the probabilistic model
to the fullest, harnessing the entire predictive distribution, particularly,
the predictive uncertainty, to select promising candidate solutions that
bring the most value to the optimisation process. This generally con-
sists not merely of those most likely to optimise the objective function
(i.e., exploiting that which is known), but also those likely to reveal
the most knowledge and information about the function itself (i.e.,
exploring that which remains unknown).

This pronounced emphasis on well-calibrated uncertainty distin-
guishes Bo as one of the standout “killer apps” for Gps and a jewel in
the crown of probabilistic ML applications. In practice, Bo has proven
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instrumental across science, engineering, and industry, where effi-
ciency and cost-effectiveness are paramount. Its applications include
protein engineering [216, 295], material discovery [227], experimental
physics (e. g., experiments involving ultra-cold atoms [282] and free-
electron lasers [63]), environmental monitoring (sensor placement) [76,
163], and the design of aerodynamic aerofoils [70, 137], integrated
circuits [153, 265], broadband high-efficiency power amplifiers [32],
and fast-charging protocols for lithium-ion batteries [4]. Notably, it
has played a crucial role in automating the hyperparameter tuning of
various ML models [236, 270], especially deep learning models, thus
representing yet another way in which probabilistic ML has contributed
to the advancement of deep learning.

However, Gps are not universally suitable for all Bo problem sce-
narios. They are most effective when dealing with smooth, stationary
functions with homoscedastic noise and a relatively modest input di-
mensionality. Additionally, Gps are easiest to work with for functions
with a single output and purely continuous inputs. While a surpris-
ingly wide array of real-world challenges satisfy these conditions,
many high-impact problems, such as de novo molecular design, which
involves sequential inputs; neural architecture search (Nas), which in-
volves structured inputs with intricate conditional dependencies; and
automotive safety engineering, which involve numerous constraints
and multiple objectives, clearly fall outside of this scope. This is not to
say that Grs cannot be extended to such challenging scenarios. How-
ever, such extensions almost always come at a cost. Consequently,
it makes sense to appeal to alternative modelling paradigms more
naturally suited to specific tasks, e. g., employing random forests (RFs)
to handle discrete and structured inputs, or deep NNs for capturing
nonstationary behaviour and dealing with multiple objectives. A major
contribution of this thesis is the introduction of a new formulation of
BO that seamlessly accommodates virtually any modelling paradigm,
including deep learning, without any compromise.

1.2 THESIS OVERVIEW

The core contributions of our thesis are summarised as follows:

1. We improve upon the framework for sparse hyperspherical Gr ap-
proximations that employ nonlinear activations as inter-domain
inducing features. This framework serves as a bridge between
Gps and NNs, with posterior predictive mean taking the form of
single-layer feedforward NNs. Our thesis examines some prac-
tical issues associated with this approach and proposes an ex-
tension that takes advantage of the orthogonal decoupling of
Grs to mitigate these limitations. In particular, we introduce
spherical inter-domain features to construct more flexible data-
dependent basis functions for both the principal and orthogonal
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components of the Gp approximation. We demonstrate that in-
corporating orthogonal inducing variables under this framework
not only alleviates these shortcomings but also offers superior
scalability compared to alternative strategies.

2. We provide a probabilistic perspective on CYCLEGANS, a cutting-
edge deep generative model for style transfer and image-to-
image translation. Specifically, we frame the problem of learning
cross-domain correspondences without paired data as Bayesian
inference in a LvM, in which the goal is to uncover the hidden
representations of entities from one domain as entities in an-
other. First, we introduce implicit Lvms, which allow flexible
prior specification over latent representations as implicit distri-
butions. Next, we develop a new vi framework that minimises a
symmetrised statistical divergence between the variational and
true joint distributions. Finally, we show that cYCLEGANS emerge
as a closely-related variant of our framework, providing a useful
interpretation as a Bayesian approximation.

3. We introduce a model-agnostic formulation of Bo based on
classification. Building on the established links between class-
probability estimation (cPE), density-ratio estimation (DRE), and
the improvement-based acquisition functions, we reformulate
the acquisition function as a binary classifier over candidate
solutions. This approach eliminates the need for an explicit
probabilistic model of the objective function and casts aside the
limitations of tractability constraints. As a result, our model-
agnostic BO approach substantially broadens its applicability
across diverse problem scenarios, accommodating flexible and
scalable modelling paradigms such as deep learning without
necessitating approximations or sacrificing expressive and repre-
sentational capacity.

Accordingly, our thesis is organised as follows:

e Chapter 2 lays the necessary groundwork for our thesis. We
begin by outlining the fundamental principles of probability
and Bayesian statistics, which form the basis of probabilistic
ML. Additionally, we introduce the widely-adopted method of
approximate Bayesian inference known as vi. Our discussion
underscores the central role played by statistical divergences,
prompting us to delve into a larger family of divergences and mo-
tivating our discussion of pDrRe. With a solid foundation in place,
we shift our focus to Gps, providing an introductory overview
and highlighting the most commonly-used sparse approxima-
tions. Finally, we conclude this background chapter by introduc-
ing the basic concepts behind Bo.
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Chapter 3 examines orthogonally-decoupled sparse Gps with
spherical NN activation features, as summarised in 1 above.

Chapter 4 examines cycle-consistent adversarial networks from
the perspective of approximate Bayesian inference, as sum-
marised in 2 above.

Chapter 5 examines our model-agnostic approach to Bo based
on binary classification and DRE, as summarised in 3 above.

Chapter 6 brings this thesis to a close by reflecting on our main
contributions and situating them in the broader landscape of
probabilistic methods in ML. Finally, we conclude by presenting
our outlook on the avenues for future research and development
in this rapidly evolving field.



