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Motivation: Unpaired Image-to-Image Translation
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Figure 1: From Zhu et al. (2017)
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Cycle-Consistent Adversarial Learning (CycleGAN)

• Introduced by Kim et al. (2017); Zhu et al. (2017)
• Forward and reverse mappings mϕ : x 7→ z and µθ : z 7→ x
• Discriminators Dα and Dβ

Distribution matching (gan objectives)
Yield realistic outputs in the other domain.

ℓreversegan (α;ϕ) = Ep∗(z)[logDα(z)] + Eq∗(x)[log(1− Dα(mϕ(x)))],
ℓforwardgan (β;θ) = Ep∗(x)[logDβ(x)] + Ep∗(z)[log(1− Dβ(µθ(z)))].

Cycle-consistency losses
Encourage tighter correspondences—must be able to reconstruct
output from input and vice versa. May alleviate mode-collapse

ℓreverseconst (θ,ϕ) = Eq∗(x)[∥x− µθ(mϕ(x))∥ρρ],
ℓforwardconst (θ,ϕ) = Ep∗(z)[∥z−mϕ(µθ(z))∥ρρ].
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Contributions

We cast the problem of learning inter-domain correspondences
without paired data as approximate Bayesian inference in a latent
variable model (lvm).

1. We introduce implicit latent variable models (ilvms),
• prior over latent variables specified flexibly as implicit
distribution.

2. We develop a new variational inference (vi) algorithm based on
• minimizing the symmetric Kullback-Leibler (kl) divergence
• between a variational and exact joint distribution.

3. We demonstrate that cyclegan (Kim et al., 2017; Zhu et al., 2017)
can be instantiated as a special case of our framework.
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Implicit Latent Variable Models

Join Distribution

pθ(x, z) = pθ(x | z)︸ ︷︷ ︸
likelihood

p∗(z)︸ ︷︷ ︸
prior

xn

zn θ

N

Prescribed Likelihood
Likelihood pθ(xn | zn) is prescribed (as
usual)

Implicit Prior
Prior p∗(z) over latent variables
specified as implicit distribution

• Given only by a finite collection
Z∗ = {z∗m}Mm=1 of its samples,

z∗m ∼ p∗(z)

• Offers utmost degree of flexibility in
treatment of prior information.
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Implicit Latent Variable Models: Example

Unpaired Image-to-Image Translation

• Prior distribution p∗(z) specified by images Z∗ = {z∗m}Mm=1 from
one domain.

• Empirical data distribution q∗(x) specified by images
X∗ = {xn}Nn=1 from another domain.

(a) samples from p∗(z) (b) a sample from q∗(x)
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Inference in Implicit Latent Variable Models

Having specified the generative model, our aims are

• Optimize θ by maximizing marginal likelihood pθ(x)
• Infer hidden representations z by computing posterior pθ(z | x)

Both require intractable pθ(x)

• must resort to approximate inference

Classical Variational Inference

• Approximate exact posterior pθ(z | x) with variational posterior
qϕ(z | x)

• Reduces inference problem to optimization problem

min
ϕ
kl [qϕ(z | x) ∥ pθ(z | x)]
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Symmetric Joint-Matching
Variational Inference



Joint-Matching Variational Inference

Variational Joint

• Consider instead directly approximating the exact joint with
variational joint

qϕ(x, z) = qϕ(z | x)q∗(x)

• variational posterior qϕ(z | x) also prescribed

xn

znϕ θ

N
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Symmetric Joint-Matching Variational Inference

Minimize symmetric kl divergence between joints

klsymm [pθ(x, z) ∥ qϕ(x, z)]

where
klsymm [p ∥ q] = kl [p ∥ q]︸ ︷︷ ︸

forward kl

+ kl [q ∥ p]︸ ︷︷ ︸
reverse kl

Why?

1. Because we can:
• klsymm [pθ(x, z) ∥ qϕ(x, z)] tractable
• klsymm [pθ(z | x) ∥ qϕ(z | x)] intractable

2. Helps avoid under/over-dispersed approximations (see paper
for details)
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Reverse kl Variational Objective

• Minimizing reverse kl divergence between joints equivalent to
maximizing usual evidence lower bound (elbo),

kl [qϕ(x, z) ∥ pθ(x, z)] = Eqϕ(x,z) [log qϕ(x, z)− log pθ(x, z)]
= Eqϕ(x,z) [log qϕ(z | x)− log pθ(x, z)]︸ ︷︷ ︸

Lnelbo(θ,ϕ)

−H[q∗(x)]︸ ︷︷ ︸
constant

• Recall (negative) elbo,

Lnelbo(θ,ϕ) = Eq∗(x)qϕ(z | x)[− log pθ(x | z)]︸ ︷︷ ︸
Lnell(θ,ϕ)

+Eq∗(x)kl [qϕ(z | x) ∥ p∗(z)]︸ ︷︷ ︸
intractable

• kl term is intractable as prior p∗(z) is unavailable—can only
sample!
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Forward kl Variational Objective

• Minimizing forward kl divergence between joints

kl [pθ(x, z) ∥ qϕ(x, z)] = Epθ(x,z) [log pθ(x, z)− log qϕ(x, z)]
= Epθ(x,z) [log pθ(x | z)− log qϕ(x, z)]︸ ︷︷ ︸

Lnaplbo(θ,ϕ)

−H[p∗(z)]︸ ︷︷ ︸
constant

• New variational objective, aggregate posterior lower bound
(aplbo)

Lnaplbo(θ,ϕ) = Ep∗(z)pθ(x | z)[− log qϕ(z | x)]︸ ︷︷ ︸
Lnelp(θ,ϕ)

+Ep∗(z)kl [pθ(x | z) ∥ q∗(x)]︸ ︷︷ ︸
intractable

• kl term is intractable as empirical data distribution q∗(x) is
unavailable—can only sample!
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Density Ratio Estimation and f-divergence Approximation

General f-divergence lower bound (Nguyen et al., 2010)
For convex lower-semicontinuous function f : R+ → R,

Eq∗(x)Df [p∗(z) ∥ qϕ(z | x)]︸ ︷︷ ︸
intractable

≥ max
α

Llatentf (α;ϕ)︸ ︷︷ ︸
tractable

,

where

Llatentf (α;ϕ) = Eq∗(x)qϕ(z | x)[f′(rα(z; x))]− Eq∗(x)p∗(z)[f⋆(f′(rα(z; x)))]

• Turns divergence estimation into an optimization problem
• Estimate divergence using a l.b. that just requires samples!
• rα is a neural net with parameters α, with equality at

r∗α(z; x) =
qϕ(z | x)
p∗(z)
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kl divergence lower bound

Example: kl divergence lower bound
For f(u) = u log u, we instantiate the kl lower bound

Eq∗(x)kl [qϕ(z | x) ∥ p∗(z)]︸ ︷︷ ︸
intractable

≥ max
α

Llatentkl (α;ϕ)︸ ︷︷ ︸
tractable

where

Llatentkl (α;ϕ) = Eq∗(x)qϕ(z | x)[log rα(z; x)]− Eq∗(x)p∗(z)[rα(z; x)− 1]

Yields estimate of the elbo where all terms are tractable,

Lnelbo(θ,ϕ) = Lnell(θ,ϕ)︸ ︷︷ ︸
tractable

+Eq∗(x)kl [qϕ(z | x) ∥ p∗(z)]︸ ︷︷ ︸
intractable

≥ max
α

Lnell(θ,ϕ)︸ ︷︷ ︸
tractable

+Llatentkl (α;ϕ)︸ ︷︷ ︸
tractable
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CycleGAN as a Special Case



Cycle-consistency as Conditional Probability Maximization

For Gaussian likelihood and variational posterior

pθ(x | z) = N (x |µθ(z), τ 2I), qϕ(z | x) = N (z |mϕ(x), t2I)

Can instantiate ℓreverseconst (θ,ϕ) from Lnell(θ,ϕ)
as posterior qϕ(z | x) degenerates (as t→ 0)

Can instantiate ℓforwardconst (θ,ϕ) from Lnelp(θ,ϕ)
as likelihood pθ(x | z) degenerates (as τ → 0)

Cycle-consistency corresponds to maximizing conditional
probabilities:

• ell. forces qϕ(z | x) to place mass on hidden representations
that recover the data

• elp. forces pθ(x | z) to generate observations that recover the
prior
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Distribution Matching as Regularization

For appropriate setting of f, and simplifying the mappings and
discriminators,

• Can instantiate ℓreversegan (α;ϕ) from Llatentf (α;ϕ)

• Can instantiate ℓforwardgan (β;θ) from Lobservedf (β;θ)

Approximately minimizes intractable divergences:

• Df [p∗(z) ∥ qϕ(z | x)] — forces qϕ(z | x) to match prior p∗(z)
• Df [q∗(x) ∥ pθ(x | z)] — forces pθ(x | z) to match data q∗(x)

Summary

Lnelbo(θ,ϕ) ≥ max
α

Lnell(θ,ϕ)︸ ︷︷ ︸
ℓreverseconst (θ,ϕ)

+Llatentkl (α;ϕ)︸ ︷︷ ︸
ℓreversegan (α;ϕ)

Lnaplbo(θ,ϕ) ≥ max
β

Lnelp(θ,ϕ)︸ ︷︷ ︸
ℓforwardconst (θ,ϕ)

+Lobservedkl (β;θ)︸ ︷︷ ︸
ℓforwardgan (β;θ)
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Conclusion

• Formulated implicit latent variable models, which introduces
implicit prior over latent variables

• Offers utmost degree of flexibility in incorporating prior
knowledge

• Developed new paradigm for variational inference
• directly approximates exact joint distribution
• minimizes the symmetric kl divergence

• Provided theoretical treatment of the links between CycleGAN
methods and Variational Bayes

Poster Session
To find out more, come visit us at our poster!

Poster #14, Session 4 (17:10-18:00 Saturday, 14 July)
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Questions?
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Symmetric Joint-Matching kl Minimization i

• kl divergence is asymmetric kl [p ∥ q] ̸= kl [q ∥ p]
• kl [qϕ(z | x) ∥ pθ(z | x)] (reverse) underestimates support
• kl [pθ(z | x) ∥ qϕ(z | x)] (forward) overestimates support
• Consider symmetric kl: klsymm [p ∥ q] = kl [p ∥ q] + kl [q ∥ p]

• Forward kl involves expectation under intractable posterior
pθ(z | x)—what we’re trying to approximate in the first place

kl [pθ(z | x) ∥ qϕ(z | x)] = Epθ(z | x)
[
log

pθ(z | x)
qϕ(z | x)

]



Symmetric Joint-Matching kl Minimization ii

• Can show

argmin
ϕ

kl [qϕ(z | x) ∥ pθ(z | x)] = argmin
ϕ

kl [qϕ(x, z) ∥ pθ(x, z)]

argmin
ϕ

kl [pθ(z | x) ∥ qϕ(z | x)] = argmin
ϕ

kl [pθ(x, z) ∥ qϕ(x, z)]

• Already showed

argmax
ϕ

Lelbo(θ,ϕ) = argmin
ϕ

kl [qϕ(x, z) ∥ pθ(x, z)]

• Can we find something similar for kl [pθ(x, z) ∥ qϕ(x, z)] ?
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