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Motivation: Unpaired Image-to-Image Translation

Figure 1: From Zhu et al. (2017)



Cycle-Consistent Adversarial Learning (CycleGAN)

- Introduced by Kim et al. (2017); Zhu et al. (2017)
- Forward and reverse mappings mg : X — zand pg : Z — X
- Discriminators D, and Dg

Distribution matching (GAN objectives)
Yield realistic outputs in the other domain.

g(ri%erse(a; o) = ]Ep*(z)[log Da(2)] + IEq*(x)[log“ - Da(mqb(x)))]a
(ON(8; 0) = Epe (x)[log Da(X)] + Ep- () llog(1 — Da(k6(2)))]-

Cycle-consistency losses
Encourage tighter correspondences—must be able to reconstruct
output from input and vice versa. May alleviate mode-collapse

Ceonst (0, @) = Eg[[IX — o (M (X))I7];
(ENG(8, 9) = Ep-p[llz — My (16(2))II5]-



Contributions

We cast the problem of learning inter-domain correspondences
without paired data as approximate Bayesian inference in a latent
variable model (Lvm).

1. We introduce implicit latent variable models (ILvms),
- prior over latent variables specified flexibly as implicit
distribution.
2. We develop a new variational inference (vi) algorithm based on

-+ minimizing the symmetric Kullback-Leibler (kL) divergence
- between a variational and exact joint distribution.

3. We demonstrate that cYCLEGAN (Kim et al,, 2017; Zhu et al,, 2017)
can be instantiated as a special case of our framework.



Implicit Latent Variable Models

Join Distribution Prescribed Likelihood
Likelihood pe(xn | zn) is prescribed (as
Pe(X,2) = pe(x|2) usual)
N— N~

likelihood prior

Prior p*(z) over latent variables
specified as distribution

Given only by a finite collection
Z* = {z;}M_, of its samples,

=

Offers utmost degree of flexibility in
treatment of prior information.



Implicit Latent Variable Models: Example

Unpaired Image-to-Image Translation
- Prior distribution p*(z) specified by images Z* = {z;, }*_, from
one domain.

- Empirical data distribution g*(x) specified by images
X* = {x,}}_, from another domain.

(a) samples from p*(z) (b) a sample from g*(x)



Inference in Implicit Latent Variable Models

Having specified the generative model, our aims are

- Optimize 6 by maximizing marginal likelihood pg(x)

- Infer hidden representations z by computing posterior pg(z] x)

Both require Po(x)

Classical Variational Inference

- Approximate po(z|x) with
(2 |X)
- Reduces inference problem to optimization problem

min KL [Gg(2[X) [| Po(z[X)]



Symmetric Joint-Matching
Variational Inference




Joint-Matching Variational Inference

Variational Joint

- Consider instead directly approximating the with

Ap(%:2) = 9o (z[%)

- variational posterior q¢(z | x) also prescribed




Symmetric Joint-Matching Variational Inference

Minimize symmetric KL divergence between joints

KLsvum [Po(X,2) || G (X,2)]

where
KLsvum [P | @] = KL[p || ]+ KL[q || P]
forward KL reverse KL

Why?

1. Because we can:
* KLsymm [DB(X7 Z) H Q¢(X, Z)] tractable
* KLsymm [Pe(Z ‘ X) H Q¢.(Z ‘ X)]

2. Helps avoid under/over-dispersed approximations (see paper
for details)



Reverse KL Variational Objective

- Minimizing reverse KL divergence between joints equivalent to
maximizing usual evidence lower bound (ELBO),

KL [qtﬁ(xﬂ Z) H pg(X, Z)] = EQ¢(X,Z) [|0g q¢>(xv Z) — log pG(X7 Z)]
= Eq,(x2) [log 4¢(z|X) — log pe(x, z)] — H[g" ()]

Lyeso(0,¢) constant

- Recall (negative) ELBO,

Lyeso(0, @) = IE:q*(x)qq>(z|x)[— log pe (X | 2)] +Eqx)KL [G¢(2 | X) [| P*(2)]

Lyew (0,0) intractable

- KL term is intractable as prior p*(z) is unavailable—can only
sample!



Forward KL Variational Objective

- Minimizing forward kL divergence between joints

KL[Pa(x,2) || G(X,2)] = Ep(x.z) [log Pe(X, 2) — log G (X, 2)]
= Epy(x2) [log po(x|2) —log g¢(x, 2)] —HIp*(2)]

£NAPLBO(9,¢7) constant

- New variational objective, aggregate posterior lower bound
(APLBO)

ENAPLBO(aa ¢) = IEp*(z)p@(x | z)[_ |og C]¢,(Z ‘ X)] +Ep*(z)K|— [DG(X ‘ Z) || g (X)]

Lier(6,0) intractable

- KL term is intractable as empirical data distribution g*(x) is
unavailable—can only sample!



Density Ratio Estimation and f-divergence Approximation

General f-divergence lower bound (Nguyen et al., 2010)
For convex lower-semicontinuous function f: R, — R,

Eq*(x)Df[ || C]¢(Z|X)] > mjxﬁ}atem(a; ¢)’
h,_/

tractable

where

K}atent(a; ¢) = Eq*(x)qu(z | x)Dd(ra (z:x))] — Eq*(x)p*(z)[f*(f(ra(z; x)))]

- Turns divergence estimation into an optimization problem
- Estimate divergence using a L.b. that just requires samples!
‘- Iy IS a neural net with parameters «, with equality at

de(z|X)
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KL divergence lower bound

Example: KL divergence lower bound
For f(u) = ulogu, we instantiate the kL lower bound

Eg-KL[qe(z]X) | ] 2 max L™ (a; )
[e3 N———

tractable

where

LI (t; @) = Eq- (x)0, (29 [108 Fa(Z: X)] — Egr (o () [Fa (Z: X) — 1]

Yields estimate of the ELBO where all terms are tractable,

ENELBO(Oa ¢) = ENELL(O, ¢) + IEq*(x)KL [Q¢(Z | X) || ]

tractable
> mjx Le (6, 9) + ﬁﬁtem(a? ?)

tractable tractable




CycleGAN as a Special Case




Cycle-consistency as Conditional Probability Maximization

For Gaussian likelihood and variational posterior
Po(x|2) = N(x| pg(2), 7°1), qg(2|X) = N(z| my(x), 1)

Can instantiate /5we>8(0, ¢) from Lye (0, P)
as posterior q(z | x) degenerates (as t — 0)

Can instantiate £9Vard(9 ) from Lyep(6, B)
as likelihood pg(x|z) degenerates (as 7 — 0)

Cycle-consistency corresponds to maximizing conditional
probabilities:

- ELL. forces g¢(z|x) to place mass on hidden representations
that recover the data

- ELP. forces po(x|z) to generate observations that recover the
prior



Distribution Matching as Regularization

For appropriate setting of f, and simplifying the mappings and
discriminators,

- Can instantiate (5" (cv; ¢) from L2 (a; ¢)
- Can instantiate /oN""(8; 6) from L2Peed(3; 6)

Approximately minimizes intractable divergences:

* Ds[p*(2) || go(z|x)] — forces q¢(z|x) to match prior p*(z)
- Drlg*(x) || pa(x|z)] — forces pe(x|z) to match data g*(x)

Summary

ﬁNELBO(07 ¢) > mo?x »CNELL(av ¢) + ﬁlﬁtent(a; ¢))
Lo (0,9) U CH )
£NAPLBO(07 ¢) > mgx ENELP(aa ¢) + Eg{)served (ﬁ' 0)

L0, 9) £50(8:0)

14



Conclusion

- Formulated implicit latent variable models, which introduces
implicit prior over latent variables

- Offers utmost degree of flexibility in incorporating prior
knowledge

- Developed new paradigm for variational inference
- directly approximates exact joint distribution
- minimizes the symmetric KL divergence

- Provided theoretical treatment of the links between CycleGAN
methods and Variational Bayes
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Questions?
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Symmetric Joint-Matching KL Minimization i

- KL divergence is asymmetric KL[p || q] # KL[q || p]
- KL[ge(z]X) || Pe(z|x)] (reverse) underestimates support
- KL[pa(z]X) || g4(z]|x)] (forward) overestimates support

- Consider symmetric KL: KLsyum [P || ] = KL[p || g] + KL[q || P]

- Forward KL involves expectation under intractable posterior
po(z | x)—what we're trying to approximate in the first place

pe (]| X)}
de(z]x)

L [po(z]X) || 92| )] = Enuo [Iog



Symmetric Joint-Matching KL Minimization ii

- Can show
arg¢min KL[qg(z|X) || Pa(z|X)] = arg¢min KL[Ge(x,2) || Po(x,2)]
arg¢min KL[po(z]X) || go(z]X)] = argquin KL[Pa (X, 2) [l g4(x, 2)]
- Already showed

arg(;nax ﬁELBO(ea ¢) = argd)min KL [Q¢(X7 Z) ” pO(X7 Z)]

- Can we find something similar for KL [pe(X,Z) || g¢(X,2)] ?
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