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Bayesian optimization (BO) is among the most effective and widely-used
blackbox optimization methods.

® BO proposes solutions according to an explore-exploit trade-off criterion
encoded in an acquisition function.

e Most acquisition functions are derived from the posterior predictive of a

probabilistic surrogate model. Prevalent among these is the expected
improvement (EI).

® The need to ensure analytical tractability in the model poses limitations
that can hinder the efficiency and applicability of BO.

e We cast the computation of EI as a probabilistic classification problem,
building on

* the well-known link between class-probability estimation (CPE) and density-ratio
estimation (DRE), and

e the lesser-known link between density-ratios and EI.

e By circumventing the tractability constraints imposed on the model, this
reformulation provides numerous natural advantages in terms of
expressiveness, versatility, and scalability:.

Bayesian Optimization (BO)

e Find input x € A that maximizes blackbox function f : X — R

X, = arg min f(x)
xeX

given noisy observations y ~ N (f(x), o*) with noise variance o*.

o Build probabilistic surrogate model upon observations Dy = { (X, yn )}

n=1-

Expected Improvement (EI)

e The improvement utility function quantifies the improvement over some 7
U(x,y, ) = max(T —y,0).

e Then, the expected improvement acquisition function is the expected
value of U(x,y, 7) under the posterior predictive p(y | x, Dy)

a<X; DN? T) — EP(?J | XIDN)[U(Xa Y, 7_)]
o If p(y |x,Dy) is Gaussian, a(x; Dy, T) has analytic form (easy to evaluate)

e But this comes at a price—quaranteeing analytical tractability of the

posterior often requires placing strong and oversimplifying assumptions
at the expense of expressiveness.

Strategy

Observation—we only care about p(y|x,Dy) to the extent that we can
compute a(x; Dy, 7).

e Why not instead find an alternative formulation of a(x; Dy, 7) that doesn’t
depend explicitly on p(y | x, Dy)?

BORE: Bayesian Optimization by Density-Ratio Estimation
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Relative Density-Ratio Density-Ratio Estimation (DRE)

o Let /(x) and g(x) be a pair of distributions. @) ¢ .Smc.e T’Y(X) = h<TO(X)) where h 1.5 mOnotom.cal.Zy. non-decreasing, it is
» The ~-relative density-ratio of £(x) and g(x) is 5 047 — 4() justifiable to maximize 7, (x) by instead maximizing ry(x).
defined as £ 02- » An obvious way to estimate 7¢(x) is to separately estimate ¢(x) and g(x)
0(x) 0.0 - using kernel density estimation (KDE) or some variant thereof, such as the
ry(x) = :

tree-structured Parzen estimator (TPE) [1].

yl(x) + (1 = 7)g(x)’
where v£(x) + (1 — 7)g(x) is the y-mixture density
with 0 <~ <1 3. | . e |
e For ~ = 0, we recover the ordinary density-ratio  o- ° ConceptlIailly,‘ the 81m].g)lest o.f these is clas§—probab111ty estimation (CPE), i.e
() -5 0 5 probabilistic classification —something we know how to do well!

ro(X) = —=
O< ) g(X) Figure: Example 1D densities

ro20(2) e This simplistic approach has major flaws, and has long since been superseded
by direct DRE methods such as CPE, KMM, KLIEP, ULSIF, RULSIF, etc [2].

density ratio
ot
I

Key Connections

The expected tmprovement function is proportional to a class-posterior probability. Hence, it can be readily estimated through probabilistic classification.

o (xDy, 07 ) x  mx) o« wx)
. » . —— —~—

x, = argmax a (x; Dy, &' (7)) = arg max 7(x)
relative density-ratio class-posterior probability xeX xeX

expected improvement

El vs. Density-Ratio Density-Ratio vs. Class-posterior Probability

o Let threshold 7 be ~v-th quantile of observed y values 7 = @‘1(7) where e Construct a binary classification problem by introducing labels

v = ®(7) = ply < 7; D). L)1ty <T,
® Define 4(x) =p(x |y < 7;Dy) and g(x) =p(x|y > 7; D). 0 ify>r.

e Remarkably, it can be shown that EI can be expressed as the ~y-relative
density-ratio, up to some constant factor [1]

o (% D, @71 (7)) o 74(x)

 Denote the class-posterior probability by n(x) =p(z =1]x).

e The ~-relative density-ratio is equivalent to the class-posterior probability, up
to a constant factor

— . ry(X) = v (x)
o Ezample. See 1D example in Figure 2 below with v = 1/3
£ 14 3 Ua) BO by Probabilistic Classification
Fqg — i)

i

o Estimate 7(x) by training a probabilistic classifier wg(x) parameterized by 6
e Different families of classifiers have complementary strengths, e.g.,

o feed-forward neural networks: multi-layer perceptrons (MLPs)

e ensembles of decision trees: random forests (RFs), gradient-boosted trees (XGBOOST)
* GP classifiers (GPCs)

— Jatent function

X  observations y < T

X  observations y > 7T

e The so-called BO loop is summarized in Algorithm 1 below.

Algorithm 1: Bayesian optimization by density-ratio estimation (BORE).
. while under budget do
.| 0" <— argming L(0)

// update classifier by optimizing parameters @ wrt binary cross-entropy (BCE) loss

s | XN $— arg max, .y To+(X)

// suggest new candidate by optimizing input x wrt classifier output

// obtain yy by evaluating blackbox function at xy

Figure: Synthetic test function f(z) = sin(3z) + 2% — 0.7z with observation noise £ ~ A/(0, 0.2%). ¢ | YN f<XN>
s | Dn < Dy1U{(xn,yn)}
s end

// update dataset

1,4

%I A | SAnvIDIA

Experimental Results
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Figure: Results on the HPOBench neural network tuning problems (D = 9).
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(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-16
Figure: Results on the NASBench201 neural architecture search problems (D = 6).
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Figure: Results on the racing line optimization problems.
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